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We demonstrate experimentally that optical phase conjugation can be used to focus light through
strongly scattering media even when far less than a photon per optical degree of freedom is detected. We
found that the best achievable intensity contrast is equal to the total number of detected photons, as long as
the resolution of the system is high enough. Our results demonstrate that phase conjugation can be used
even when the photon budget is extremely low, such as in high-speed focusing through dynamic media or
imaging deep inside tissue.
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Biological tissue strongly scatters light, traditionally
limiting the depth of optical imaging to within one milli-
meter. Recently, methodswhere phase conjugate fields “time
reverse” the effect of scattering and converge on a guide star
have been shown effective in overcoming scattering [1–16],
thus opening an avenue towards high-resolution optical
imaging and manipulation in biological issue. A general
concern, however, is that the guide stars may be very weak,
leading to the question of how many photons need to be
detected to effectively phase conjugate a light wave. Herewe
demonstrate that phase conjugation is effective even when
less than a photon per optical degree of freedom is detected.
We found that the best achievable intensity contrast is equal
to the total number of detected photons, as long as the
resolution of the system is high enough.
Modern optical phase conjugation systems are commonly

based on digital optical phase conjugation (DOPC)
[10,11,17,18] or use “analog” photorefractive materials
[19–21,4]. Both approaches are two-step processes. In the
“recording” step, light propagates from a guide star to the
phase conjugation system. In DOPC, the phase and ampli-
tude of the scattered wave (Eþ) is typically measured using
phase stepping or off-axis holography using a reference
beam. Likewise, in the analog approach, light interferes with
a reference beam in order to generate a hologram in the
photorefractive material. In the ”playback” step, the system
generates the phase conjugate copy of the complex field
E− ∝ ðEþÞ∗, either by using a digital spatial light modulator
(SLM) or by illuminating the photorefractive material with
a readout beam. Because of the time-reversal symmetry of
light propagation, the phase-conjugated wave propagates
back through the scattering medium and focuses at the
guide star.
In the standard view, phase conjugation increases the

intensity in the desired focus by an average factor of
η ¼ M, whereM is the number of independently controlled
optical modes [1,3,17]. This result assumes that the fields
are measured and reproduced exactly. However, until now it

remained unclear how phase conjugation performs in the
low-photon limit, where shot noise prevents an accurate
measurement of Eþ [22,23]. One may think that the
number of detected photons for each measured optical
mode needs to be high enough to measure the field in each
of the M modes with sufficient accuracy [24]. However,
here we demonstrate the opposite: phase conjugation is still
possible even with far less than a single detected photon per
degree of freedom. Our study reveals that the fundamental
limit for the best possible enhancement η is given by

ηmax ¼
1

M−1 þ n−1r þ n−1s
; ð1Þ

where nr and ns are the total number of detected photons
coming from the reference and scattered beam, respec-
tively, and the overline denotes averaging over repetitions
of the measurement. Interestingly, in the low-photon limit
(i.e., when ns ≪ M), the enhancement is equal to the total
number of detected signal photons (i.e., ηmax ¼ ns).
In order to derive Eq. (1), we first introduce the fidelity

jγj2 [25], where

γ ¼
P

M
m¼1 E

−
mEþ

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
M
m¼1 jE−

mj2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

M
m¼1 jEþ

mj2
p ð2Þ

with m the index of the controlled (or measured) optical
mode. The fidelity denotes the fraction of the incident
power that is shaped correctly and, hence, contributes to the
focus. The enhancement and fidelity are related through
η ¼ jγj2M [25]. Ideally, E− ∝ ðEþÞ∗, and jγj2 ¼ 1.
In practice, however, shot noise limits the accuracy at

which Eþ can be measured. We model the number of
detected photons in a single measurement as n ¼ nþ ξ,
where n is the average photon count and ξ is a noise term

with the statistical properties ξ ¼ 0 and ξ2 ¼ n following
from Poisson statistics [26].
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In a phase-stepping interferometry setup, the number of
detected photons in a single controlled optical mode is the
result of interference between the scattered field Es;m and
the reference field Er;m:

nk;m¼jEr;mþEs;mj2
¼nk;mþξk;m

¼nr;m
K

þns;m
K

þ 2

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr;mns;m

p
cosðϕs;mþ2πk=KÞþξk;m:

ð3Þ
ξk;m is the shot noise term associated with nk;m and ϕs;m

is the relative phase difference between the reference field
and the scattered field at a chosen mode m. In our
experiments, the controlled mode index m corresponds
to different correlation areas (loosely speaking, different
granules in the scattered speckle field; see below for the
definition) on the SLM (or image sensor). K is the total
number of phase steps, and k ∈ 1 …K denotes the step
number. For off-axis holography, the relation is identical: to
measure the amplitude and phase of a single optical mode,
K different pixels are needed; when we identify these pixels
by k ∈ 1 …K, the same equation is found. The reference
intensity is considered to be homogeneous across all optical
modes: nr;m ¼ nr=M. The complex amplitude of the signal
beam is then reconstructed using

E−
m ¼

XK
k¼1

nk;me−i2πk=K: ð4Þ

By substituting Eq. (3) and averaging over measure-
ments, we find

E−
m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nr;mns;m
p

eiϕs;m ¼ ffiffiffiffiffiffiffiffi
nr;m

p
Eþ�
m ð5Þ

and

jE−
mj2 ¼ nr;mns;m þ

XK
k¼1

ξ2k;m; ð6Þ

as the dc term nr;m=K þ ns;m=K and the noise term ξk;m in
Eq. (3) are eliminated with a summation and averaging,

respectively. Then, using ξ2k;m ¼ nk;m and Eq. (3),

jE−
mj2 ¼ nr;mns;m þ nr;m þ ns;m: ð7Þ

Assuming that M is sufficiently high, we can writeP
M
m¼1E

−
mEþ

m≈
P

M
m¼1E

−
mEþ

m and
P

M
m¼1 jE−

mj2≈
P

M
m¼1 jE−

mj2.
We can now substitute Eqs. (5) and (7) into Eq. (2) to find

jγj2 ¼ ðPM
m¼1 ns;mÞ2nr=M

ðPM
m¼1 nr;mns;m þ nr;m þ ns;mÞð

P
M
m¼1 ns;mÞ

¼ n2snr=M
ðnsnr=M þ nr þ nsÞns

¼ M−1
M−1 þ n−1r þ n−1s

; ð8Þ

which gives us the result in Eq. (1). Interestingly, in the low-
photon limit, the fidelity equals ns=M, so increasing the

number of degrees of freedom reduces the fidelity, while the
enhancement η ¼ jγj2M in the focus remains constant.
Experiment.—In our experiment, DOPC [10,11,17,18]

is used to generate the phase conjugate beam (see Fig. 1
for a detailed schematic of the experiment). The digital
implementation here is particularly useful to quantify the
scattered input photon number ns and to see how it affects
the phase conjugation results.
Our experiment is designed to observe the contrast η over

a wide range of ns (see Fig. 1). A 532-nm laser beam is split
into three beam paths: input beam, reference beam, and
playback beam. All beams are spatially filtered using single
mode fibers. Beam splitter BS2 divides the DOPC system
into a detection part (CMOS and BS1) and a playback part
(SLM and BS3). The SLM is placed in the exact mirror

(a)

(b)

beam beam

beam

FIG. 1. Experimental setup. (a) In the recording step, the input
beam (denoted as “INP beam”), which is spatially filtered
through a single-mode fiber (SMF), propagates through the
scattering media (S). The scattered input beam is then collected
by the planoconvex lens (L, focal length ¼ 5 cm) and relayed to
the sCMOS sensor through a 1X telescope system (1X TS),
interfering with the collimated reference beam (denoted as “REF
beam”). The complex field distribution of the signal beam is then
measured using a four-step phase-stepping method. (b) In the
playback step, the collimated playback beam (denoted as “OPC
beam”) reflects off the spatial light modulator (SLM) on which
the conjugated phase of the measured wave front is displayed.
The APD measures the fraction of power in the phase conjugate
beam that is coupled back to the SMF, and the CCD camera
directly captures the transmitted intensity distribution. BS, 50=50
beam splitter; LP, linear polarizer.
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image of the image sensor. The single mode fiber on the
input beam path defines the input mode, while each
correlation area on the SLM (or image sensor) plane
defines a controlled (or measured) mode.
In the recording step, the collimated input beam,

scattered by a 450-μm-thick opaque opal glass (No. 43-
717, Edmund Optics), was interfered with a plane reference
beam on the image sensor [PCO.edge 5.5, PCO; 16-bit
sCMOS sensor; readout noise 1.5e− (rms), dark noise
0.5e−=s per pixel; quantum efficiency ∼50%]. The number
of controlled modes M, which was experimentally quanti-
fied as the total number of pixels (1920 × 1080) divided
by the speckle autocorrelation area (∼9 pixels) [27], was
around 220 000. The speckle correlation area was con-
trolled with an aperture placed in the 1X telescope system
which sets the range of transverse wave vector components
contributable in the phase conjugation process. Reference
photons per controlled optical mode nr=M were ∼10 000.
The average number of signal photons per controlled
optical mode ns=M, which was controlled with a precali-
brated acousto-optic modulator (not shown in Fig. 1), was
within the range of 0.004–2000. The input wave front is
measured using phase-stepping holography with the four
phase steps 0, π=2, π, and 3π=2.
In the playback step, the phase conjugate copy of the

measured wave front was generated using a phase-only
spatial light modulator (PLUTO phase-only SLM,
Holoeye). Then, the fraction of power in the phase
conjugate beam, coupled back to the single mode fiber
through the opal glass, was monitored by the avalanche
photodetector (APD). The use of a single mode fiber
assures that the optical mode we monitor is in the exact
time-reversal symmetry with the input mode. The intensity
distribution of the phase conjugate beam was also directly
visualized by the CCD sensor.
Even if the incident field could be measured exactly, the

accuracy of the reproduction is limited by experimental
factors, such as the fact that a phase-only SLM is used
instead of the idealized phase-and-amplitude light modu-
lator. Other factors, such as pixel cross talk on the SLM or
imperfect alignment further reduce the fidelity. The effect
of these experimental factors and the effect of shot noise
will be statistically independent. Therefore, we can define
an experimental fidelity as jγexj2 ≡ αexjγj2, where jγj2 is
given by Eq. (8), and the constant αex incorporates all
experimental limitations (as discussed in Ref. [28]). For
perfect phase-only modulation αex ¼ π=4 [3], and typical
experimental values range from 0.1 to 0.5 [17,18]. The
experimental constant αex in our experiment was deter-
mined to be 0.27, using a high-power input beam so that the
effects of shot noise are negligible.
The experiment confirms our theoretical predictions. In

Fig. 2, we plotted the experimental enhancement versus
ns together with the theoretical curve η≡ αexjγj2M. The
experimental enhancement scales with the total number of

signal photons ns exactly as expected over a scaling range
of over 5 orders of magnitude. The image captured from the
CCD sensor further confirms that the time-reversed mode is
reconstructed with a significant contrast corresponding to
the scaling relation even with the extremely low value of
0.004 photon per controlled optical mode, corresponding to
about 1000 signal photons in total.
In order to have a better understanding of the robustness

in the low-photon limit, we further analyzed the influence
of shot noise on the phase measurement accuracy for the
case that K¼4. By letting E−

m¼AmcosϕmþiAmsinϕm¼
½ðn4;mþξ4;mÞ−ðn2;mþξ2;mÞ�þi½ðn1;mþξ1;mÞ−ðn3;mþξ3;mÞ�,
the joint probability density function (PDF) for the
measured amplitude and phase is given by

PA;ϕðAm;ϕmjn1;m; n2;m; n3;m; n4;mÞ
¼ AmPΔðAm cosϕmjn4;m; n2;mÞPΔðAmsinϕmjn1;m; n3;mÞ;

ð9Þ
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FIG. 2. Effect of shot noise on time-reversal fidelity. (a) The
intensity distribution of the phase conjugate beam was directly
visualized by the CCD sensor. Left and middle: With the phase
conjugate beams generated at n̄s=M of ∼2000 and ∼0.004. Right:
With an unshaped incident beam (i.e., plane pattern on SLM).
(b) Experimental and theoretical enhancement versus the total
number of input photons n̄s. The solid curve and dotted curve,
respectively, represent the theoretical and experimental enhance-
ment.
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as the two differential terms are statistically independent.
The leading term Am on the right side is the Jacobian of the
transformation, and PΔðΔjn1; n2Þ is the probability mass
function of the subtraction of two independent Poissonian
random variables with means n1 and n2, respectively,
which is known as the Skellam distribution [29]:

PΔðΔjn1; n2Þ ¼ e−ðn1þn2Þ
�
n1
n2

�
Δ=2

IΔð2
ffiffiffiffiffiffiffiffiffiffi
n1n2

p
Þ; ð10Þ

where IΔ is the modified Bessel function of the first kind.
To calculate the distribution of the measured phase, we
choose an input beam with ϕs;m ¼ 0 and use Eq. (3) to find
nk;m. Considering that ns;m of a fully developed speckle
pattern is exponentially distributed over different controlled
optical modes [27], the PDF for the phase measurement
accuracy can be calculated by integrating the PDF given in
Eq. (9) over ns weighted with an exponential PDF. Finally,
we integrate over all possible measured amplitudes A:

PϕðϕÞ ¼
ZZ

e−ns;m=hns;mi
hns;mi

AmPΔ

�
Am cosϕmj

nr;m
4

þ ns;m
4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr;mns;m

p
2

;
nr;m
4

þ ns;m
4

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr;mns;m

p
2

�

× PΔ

�
Am sinϕmj

nr;m
4

þ ns;m
4

;
nr;m
4

þ ns;m
4

�

× dAmdns;m; ð11Þ
where hns;mi (¼ ns=M) denotes the average signal strength
in a single controlled optical mode.
Figure 3 presents the excellent agreement between the

experimental phase error distribution PϕðΔϕÞ and the
theoretical distribution [Eq. (11), evaluated numerically].
The experimental phase error distribution is obtained by
comparing the phase map measured at the low-photon limit
with the reference phase map measured at ns=M∼2000,
where the impact of shot noise is negligible. The phase
errors are binned into 101 equally divided bins. As
expected, the phase measurement accuracy is significantly
reduced as the number of signal photons decreases
below the level of ns=M ∼ 1. However, the phase error
is favorably populated around 0 even down to
ns=M ∼ 0.004. The excellent statistical stability of the
experimental results can be attributed to the large number
of measured modes (∼220 000), which itself yields an
ensemble-averaged result.
The counterintuitive aspects of our experiments can

best be illustrated by the following thought experiment.
Imagine a stream of 1000 signal photons detected and
played back by 107 controllable modes. In the quantized
picture that at least a single photon is required for a correct
phase measurement, we would at best make a correct
measurement at M ¼ 103 modes, which is 1=104 of the
controlled modes (i.e., jγj ¼ 1=104), resulting in the

unappreciable enhancement of 1þ 107=108 ¼ 1.1 [3].
This prediction is at odds with our presented analysis
and experimental results that promise an enhancement of
1000. This paradox can be explained by the concept of
wave-particle duality—the quantization occurs after the
interferometric mixing. Therefore, even though each DOPC
pixel harvests wave front information from less than a
quantum of signal photon energy on average, the informa-
tion is still useful in steering the output phasor, such that
in aggregate we can achieve a significant contrast in time-
reversed light focusing through a scattering medium.
For a given number of signal photons, the contrast that can

be achieved with optical phase conjugation is much higher
than what can be achieved with feedback-based methods.
For feedback-based wave front shaping, M different inter-
ferometric measurements are needed, and the maximum
enhancement is proportional to the average number of
photons recorded per measurement, i.e., ηmax ¼ ns=M, with
ns the total photon budget for all measurements [30]. Note,
however, that feedback-based wave front shaping allows one
to simultaneously determine the wave fronts for focusing at
any desired point [31], whereas optical phase conjugation
finds only the solution for a single focus at the time.
Therefore, for measuring the full transmission matrix of a
sample (with all possible combinations of M input modes
andM outputmodes), bothmethods are expected to reach the
same fidelity for a given total photon budget.
In summary, our study provides the first comprehensive

understanding of the interplay between the number of
controllable modes and photon budgets available in digital

1

0.8

0.6

0.4

0.2

0
0

FIG. 3. Effect of shot noise on phase measurement accuracy.
The phase error distribution PϕðΔϕÞ was obtained by comparing
the phase map measured at a low-photon limit (red curve,
n̄s=M∼20; orange curve, n̄s=M∼0.4; green curve, n̄s=M∼0.07;
cyan curve, n̄s=M∼0.004) with the reference phase map mea-
sured at a negligible shot noise level (n̄s=M∼2000). The number
of bins is 101, uniformly distributed from −π to π. The solid
curve and dotted curve, respectively, represent the theoretical and
experimental phase error distribution. All curves are normalized
such that the maximum value is unity.
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optical phase conjugation. As indicated in Eq. (1), in
general, having one of the three parameters (M, nr, and
ns) much larger than the other does not significantly
improve the enhancement η. In other words, the enhance-
ment η is capped to the least of three parameters.
Our results, which are directly applicable to the conven-

tional analog phase conjugation scheme [19–21,4], exhibit
numerous counterintuitive implications:
(i) It is always beneficial to perform phase conjugation

with a resolution as high as possible, even if doing so
decreases the number of photons per controlled mode to
far below 1. Our results guarantee that this configuration
provides an enhancement equal to the total number of
photons ns collected during the phase conjugation process.
(ii) In the low-photon limit, the enhancement, tradition-

ally known to solely depend on the number of controlled
optical modes, becomes proportional to the parameters
affecting ns, such as the incident power of the input beam,
the exposure time for wave front measurement, and the
tagging efficiency of the guide star (e.g., diffraction
efficiency of the ultrasound guide star [6–8] and quantum
yield of fluorescence guide star [9]).
(iii) The number of input modes [i.e., the number of

optical modes in guide star(s)] can be increased without
compromising the enhancement. In the low-photon limit,
the effect of the increased photon number ns, that results
from increasing the number of input modes, will counteract
the well-known inverse scaling of the enhancement with the
number of input modes [3].
Our results demonstrate that phase conjugation can be

used even when the photon budget is extremely low, such as
in high-speed focusing through dynamic media or imaging
deep inside tissue. We anticipate the analysis and implica-
tions, presented in this study, will serve as a stepping stone
towards the adoption and improvement of optical phase
conjugation in realizing its biomedical applications.
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