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Abstract: We demonstrate the use of shallow diffraction gratings for 
quadrature phase interferometry. A single shallow diffraction grating-based 
Michelson interferometer yields only trivial (0o or 180o) phase shift between 
different output ports. In comparison, a combination of two parallel shallow 
diffraction gratings can be useful to achieve desired phase shifts (e.g., 90o 
for quadrature phase interferometry). We show that the phase at different 
output ports of a grating-pair based interferometer can be adjusted by 
shearing the two gratings with respect to each other. Two harmonically-
related diffraction gratings are used to demonstrate phase shift control at the 
output ports of a modified Michelson interferometer. Our experimental data 
is in good agreement with theory. 
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1. Introduction 

Highly accurate amplitude and phase measurements of optical signals are important in many 
applications ranging from metrology [1] to cell biology [2]. Traditional phase-contrast 
imaging techniques such as Zernike phase [3, 4] and Nomarski differential interference 
contrast (DIC) [5] render excellent phase contrast images; however, the phase information is 
only qualitative in nature. To retrieve quantitative phase information in Nomarski DIC, 
several approaches have been proposed that include: DIC with changing shear direction [6], 
phase shifting DIC [7, 8], and non-iterative phase reconstruction methods such as half-plane 
Hilbert transform [9]. In addition, Arnison et al. proposed a method that combined DIC 
microscopy with phase shifting, shear rotation, and Fourier phase integration to yield linear 
phase image of a sample [10]. Recently, Ishiwata et al. have developed retardation-modulated 
DIC - a method to extract the phase component from the DIC image using two images with 
different retardation [11]. 

Other methods for quantitative phase imaging (QPI) include digital holography [12, 13], 
Hilbert phase microscopy (HPM) [14, 15], and polarization based techniques [16, 17]. 
Interference microscopy techniques based on PSI generally require recording of four 
interferograms with precise π/2 phase shifts of the reference field, adding complexity to the 
system while others can be computation extensive. HPM and digital holography are simpler as 
they require only one interferogram for QPI. We note that the methods depend on recording of 
high frequency spatial fringes for successful phase unwrapping. We also note that multiport 
fiber based systems such as 3x3 couplers can provide non-trivial phase difference, which can 
be manipulated for quadrature phase measurements [18, 19]. However, free space equivalents 
of a 3x3 coupler do not exist.  

In this letter, we report a new method for obtaining non-trivial phase difference between 
the output ports of a reflectance based interferometer through the use of shallow diffraction 
gratings. We show that as opposed to a single shallow diffraction grating-based interferometer 
(which provides only trivial phase shifts), a pair of harmonically-related shallow diffraction 
gratings can be used to realize a modified Michelson interferometer where the phase shifts 
between different output ports can be adjusted. More importantly, the phase shift can be 
adjusted by simply shearing one grating with respect to the other. This approach does not 
change the path length relationships of the different interference beams within the 
interferometer – an advantage for metrology [1] and low coherence interferometry 
applications [20-23].  

This reported method to obtain non-trivial phase shift opens new possibilities for full-field 
quadrature phase interferometry.  
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2. Phase of diffracted light in shallow gratings 

The phase of transmitted / reflected and diffracted light in shallow diffraction gratings is a 
well understood quantity. However, for the sake of completeness, we provide a brief account 
of how a diffraction grating affects the phase of light. Consider a sinusoidal phase grating (see 
Fig. 1). 
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Fig. 1. Spatial phase modulation in a sinusoidal phase grating. 

The complex transmittance of a sinusoidal phase grating can be expressed as:  
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where α, Λ, and xo are the amplitude of phase modulation, period, and displacement from the 
origin along x-direction, respectively, of the phase grating. Defining ( ) Λ= /2 oo xx πξ , we 

can rewrite Eq. (1) in the form: 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ ++
Λ

= ∑
∞

−∞= 2

2
exp

πξπα o
m

m xxjmJxt ,   (2) 

where ( )αmJ  is mth order Bessel function of the first kind. Using the identity 
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It should be noted that for shallow phase gratings, Eq. (3) holds regardless of the grating  
profile [24]. 

3. Single grating-based Michelson interferometer 

Diffraction gratings can be used as beam splitters in different interferometric designs. As 
mentioned earlier, the diffracted light in diffraction gratings acquires a unique phase with 
respect to the undiffracted light. Moreover, this distinct phase φ(xo) can be adjusted by 
translating the diffraction grating in x-direction [see Eq. (3)]. However, the phase shifts 
between different output ports of single grating-based Michelson / Mach-Zehnder 
interferometers are only trivial in nature. To better understand this phenomenon and the 
operation of our harmonically-related gratings-based interferometer, we start by examining a 
simpler system – a Michelson interferometer based on a single shallow diffraction grating G1 
[see Fig. 2(a), and 2(b)]. 
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In the arrangement shown in Fig. 2(a), a collimated beam from a laser source is directed at 
normal incidence at G1, which acts as a beam splitter during the first diffraction. Only two 
beams are considered, i.e., the zeroth order (black line) and a first order diffracted beam (red 
line) which form the sample and reference arms, respectively, of the Michelson 
interferometer. Note that the grating period Λ1 can be chosen so that only the zeroth and the 
first order diffracted beams exist. Mirror M1 is shown as the sample whereas M2 represents the 
reference mirror. The returning sample and reference beams reach the grating G1 and undergo 
a second diffraction. At this time, the grating acts both as a beam splitter as well as a 
combiner, since it splits and combines the incoming sample and reference beams at the three 
output ports I, II, and III of the interferometer. The coincident reference and sample beams at 
the three ports are shown as dashed black and red lines [see Fig. 2(b)]. A beam splitter (BS) is 
used to separate the output beam at port II from the input beam. In the context of Figs. 2(c)-
2(e), which illustrate the phase of the diffracted beams with respect to the undiffracted beams 
during the two passes, the total electric field at port I of the single grating-based 
interferometer can be written as: 

( )( ){ }
( )( ){ } ,2/2exp

2/2exp

1122

1111I

πξ
πξ
+++

+−=
xkdiE

xkdiEE      (4) 

where E1 and E2 are the amplitudes of the field components reaching port I from the sample 
and reference arms, respectively. k is the optical wave vector, and the parameters d1 and d2 
correspond to the path lengths of the sample and reference arms, respectively. Moreover, 

( ) 1111 /2 Λ= xx πξ , where
1x  is the displacement of the grating G1. Therefore, using *

II EE , the 
interference signal at port I of the interferometer can be written as: 

( ) ( ){ }11121I 22cos2 xddkAi ξ+−= ,     (5a) 
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Fig. 2. (a, b) Schematic of a Michelson interferometer using a single shallow diffraction 
grating, G1. (a) The transmitted sample beam and the diffracted reference beam are shown in 
black and red solid lines, respectively. (b) shows dashed black and red lines representative of 
coincident sample and reference beam at output ports I, II, and III of the interferometer. (c) 
Phase shift of the diffracted beam with respect to the undiffracted beam during the first 
diffraction. (d,e) Phase shifts of the diffracted sample and reference beams, respectively, during 
the second diffraction. x1 is the actuation of grating G1 along the x-direction for the experiment, 
whereas d1 and d2 represent path lengths of sample and reference arms, respectively. Mi: ith 
Mirror; BS: Beam splitter. 

 

Similarly, the interference signals at ports II and III of the interferometer can be written as:  

Field comp. from the sample arm � 

Field comp. from the reference arm � 
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( ) ( ){ }πξ ++−= 11122II 22cos2 xddkAi ,     (5b) 

( ) ( ){ }πξ ++−= 11123III 22cos2 xddkAi ,     (5c) 

respectively. The parameters Ai, i = 1, 2, 3 are the amplitudes of the interference signals at 
ports I, II, and III, respectively, and depend upon the diffraction efficiency of the grating G1. It 
is clear from Eq. (5) that ports II and III of a single shallow grating-based Michelson 
interferometer are in phase whereas the port I of the interferometer is 180o out of phase with 
respect to the other two output ports. This geometry is therefore unsuitable for extracting 
quadrature signals.  

To corroborate the above discussion, an experimental setup was made using a collimated 
beam (1/e2 diameter ≈ 1 mm) from a HeNe laser (λ = 633 nm) and a shallow 600 grooves/mm 
blazed transmission grating (Thorlabs, Inc., GT25-06V). The reference mirror was mounted 
on a voice coil to modulate the reference arm. Heterodyne interference signals were acquired 
at the three output ports using New Focus photodetectors (model 2001) and a 16-bit analog-
to-digital converter (National Instruments, model PXI-6120). The grating was mounted on a 
computer-controlled piezo actuator (25.5 nm/V) in order to measure the phase shifts between 
different ports of the interferometer for various positions of the grating. For each position of 
the grating, DC components were removed from the acquired heterodyne signals at the three 
ports; the resulting interference signals, represented by Eqs. (5a)-(5c), were subsequently 
processed to determine the phase shifts between the output ports. Figure 3 shows the 
measured phase shifts between different output ports of the interferometer versus grating 
displacement over 3.5 microns (~ 2 grating periods) along the x1 direction specified in Figs. 
2(a),and 2(b). As expected, ports II and III are in phase whereas port I is ~180o out of phase 
with respect to the ports II and III, indicating that a single shallow diffraction grating-based 
Michelson interferometer cannot provide but trivial phase shifts between different output 
ports. Although, p-polarized light was used in this reported experiment (see results in Fig. 3), 
similar results were observed for the s-polarized light. 
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Fig. 3. Measured phase shifts between different ports of a single grating-based Michelson 
interferometer versus grating displacement (x1) along the x-direction. 

 
4. Harmonically-related grating pair-based Michelson interferometer  

As illustrated by Eq. (5a)-Eq. (5c), a non-trivial phase shift given by ( )112 xξ  is conferred on 
the interference term associated with each output port of a single-grating based interferometer. 
Since the amount of non-trivial phase shift is the same for each output port, the configuration 
shown in Figs. 2(a) and 2(b) yields only trivial phase difference between the output ports. This 
illustrates that it is not possible for a single shallow grating based interferometer, the 
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Michelson interferometer described above or the Mach Zehnder configuration described in 
Ref. [24], to operate as a quadrature phase interferometer.   

Fortunately, this effect does not extend to interferometers that contain two or more 
shallow gratings. In this section, we report on a modified Michelson interferometer based on 
two harmonically-related shallow diffraction gratings [see Figs. 4(a) and 4(b)] that can be 
adjusted to form a quadrature phase interferometer.  

We choose the period of first grating G1 as twice the period of the second grating G2. The 
two gratings are placed at distance d1 and aligned such that the grating planes as well as 
grating vectors are parallel to that of each other. Two mirrors M1 and M2 are introduced in the 
setup and aligned such that the first order diffracted beams (solid green and red lines) from G1 
meet with the undiffracted beam (solid black line) at G2 [see Fig. 4(a)]. Moreover, the angle of 
incidence for the two beams at G2 is the same as the angle of diffraction θ at G1. 
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Fig. 4. (a, b). Modified Michelson interferometer design based on two harmonically-related 
shallow transmission gratings, where d1 is the inter-grating distance and θ is the angle of 
diffraction. The sample and reference beams are shown as solid black and dashed red-green 
lines, respectively. (c)-(h) Phase shifts of the diffracted and undiffracted light during the first 
and second diffractions at gratings G1 and G2. Parameters x1 and x2 correspond to the actuations 
of grating G1 and G2, respectively, whereas d3 and d4 represent the path lengths of the sample 
and reference arms, respectively. Mi: ith Mirror; BS: Beam splitter. 

For a given inter-grating distance d1, the two first order diffracted beams will travel the 
same distance d2 = d1/cos(θ) between G1 and G2.  The grating G2 combines the two first order 
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(6) 

beams from G1 to form the reference beam (dashed red-green line) as shown in Fig. 4(a). The 
undiffracted beam from G1 passes straight through G2 to form the sample arm of the 
interferometer.  

We note that fine alignment between the grating vectors is important in the proposed 
scheme for non–trivial phase shifts. The grating vectors alignment can be ensured by 
observing the interference pattern of reference beam arriving at mirror M4. As mentioned 
earlier, the reference beam (represented by dashed red-green line) is comprised of two field 
components. Without proper alignment of the grating vectors, the interference of the two field 
components will form fringes at mirror M4. However, by adjusting the grating vector 
alignment of the grating G2, the fringes can be transformed into a bull’s eye pattern – a 
representative of exact alignment of the grating vectors. 

The returning sample beam arrives straight at G1 whereas the reference arm beam reaches 
G1 through the two possible paths set by the grating G2 and mirrors M1 and M2. The portion of 
returning reference beam that passes through G2 undiffracted is shown as dashed red-green 
line whereas the diffracted component is represented by dashed purple-blue line [see Fig. 
4(b)]. Next, the grating G1 splits and combines the incoming sample and reference beams at 
ports I, II, and III of the interferometer; the coincident five field components are represented 
by a five-colored dashed line at each output port. Figures 4(c)-4(h) show the phase of different 
beams as they undergo diffraction at G1 and G2 during their trip from the input port to the 
output ports of the modified Michelson interferometer. The total electric field at port I of the 
harmonically-related grating pair based interferometer can be written as: 
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In Eq. (6), the path lengths d3 and d4 are related to the sample and reference arms, 
respectively. The parameters EI,1 to EI,4 are the amplitudes of field components from the 
reference arm whereas EI,5 is the amplitude of the field component from the sample arm 
arriving at port I of the interferometer. Furthermore, ( ) 1111 /2 Λ= xx πξ  (as defined earlier) 

and ( ) 2222 /2 Λ= xx πξ . The parameters 2x  and 
2Λ  are the displacement and period, 

respectively, of the second grating G2. 
As labeled in Eq. (6), the first four terms represent the field components arriving at the 

output port I from the reference arm. This is because there are two possible paths (via mirrors 
M1 and M2) to transit between gratings G1 and G2. The 5th term in Eq. (6) is the field 
component contributed by the sample arm. We also note that by shearing the grating G2 with 
respect to G1, the phase of 2nd to 4th reference field components can be adjusted. As a note, if 
either of the paths (via mirrors M1 and M2) were blocked, only 1st or 4th term will remain (as 
contribution from the reference arm) that will yield trivial phase shifts similar to that in a 
single grating-based interferometer design.  

From Eq. (6), we can express the interference signal at the output port I of the 
interferometer [shown in Fig. 4(a), and 4(b)] can be written as: 

( ) ( ) ( )[
( ) ( ) ( ){ }] )a7(,2,

2cos,2,

112221

12345I2121I

xxxx

ddddkExxExxi ,

ξξφ +−′
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where 

Field comp. from ref. arm via M1, M4, M1 � 

� 

Field comp. from the sample arm � 

Field comp. from ref. arm via M1, M4, M2 

� Field comp. from ref. arm via M2, M4, M1 

� Field comp. from ref. arm via M2, M4, M2 
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such that  

( ) ( ) ( ){ } ( ) ( ) ( ){ } 4I,22113I,2I,22111I,211 2sin24cos, ExxEExxExxF ++−++= ξξξξ ,  (7c) 

( ) ( ) ( ){ } ( ) ( ) ( ){ }22113I,2I,22111I,212 2cos24sin, xxEExxExxF ξξξξ ++−+= .   (7d) 

The amplitudes of the field components can be written in terms of diffraction efficiencies of 
the gratings G1 and G2 as: 

43,134,243,224,11I, ηηηη=E ,       (8a) 

63,136,243,224,12I, ηηηη=E ,       (8b) 

43,134,263,226,13I, ηηηη=E ,       (8c) 

63,136,263,226,14I, ηηηη=E ,       (8d) 

53,125,252,225,15I, ηηηη=E ,       (8e) 

where 
mni,η is the diffraction efficiency of ith grating from port m to n (see Fig. 5 that labels 

different ports of the gratings G1 and G2). 
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Fig. 5. Schematics labeling different ports of gratings G1 and G2. 

Similarly, the interference signal at port II of the interferometer can be expressed as:  

( ) ( ) ( )[
( ) ( ) ( ){ }] )a9(,2,

2cos,2,

112221

12345,II2121II

xxxx

ddddkExxExxi

ξξφ +−′′
+−+−′′=

where 

( ) ( ) ( ) ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=′′+=′′ −

213

2141
2121

2
421

2
321 ,

,
tan,,,,,

xxF

xxF
xxxxFxxFxxE φ   (9b) 

such that  

( ) ( ) ( ){ } ( ) ( ) ( ){ } 4II,22113II,2II,22111II,213 2sin24cos, ExxEExxExxF +++++−= ξξξξ ,  (9c) 

( ) ( ) ( ){ } ( ) ( ) ( ){ }22113II,2II,22111II,214 2cos24sin, xxEExxExxF ξξξξ ++−+−= .  (9d) 

In Eqs. (9a)-(9d), EII,1 to EII,4 represent the amplitudes of field components from the reference 
arm whereas EII,5 is the amplitude of the field component from the sample arm arriving at port 
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II of the interferometer, which are given in terms of diffraction efficiencies of the gratings G1 
and G2 as: 

42,134,243,224,11II, ηηηη=E ,                 (10a) 

62,136,243,224,12II, ηηηη=E ,                 (10b) 

42,134,263,226,13II, ηηηη=E ,                 (10c) 

62,136,263,226,14II, ηηηη=E ,                 (10d) 

52,125,252,225,15II, ηηηη=E .  (10e) 

In a similar fashion, the interference signal at port III of the interferometer is written as:  

( ) ( ) ( )[
( ) ( ) ( ){ } ] )a11(,2,

2cos,2,

112221

12345III2121III

πξξφ ++−′′′
+−+−′′′=

xxxx

ddddkExxExxi ,       

where 

( ) ( ) ( ) ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=′′′+=′′′ −

215

2161
2121

2
621

2
521 ,

,
tan,,,,,

xxF

xxF
xxxxFxxFxxE φ  (11b) 

such that  

( ) ( ) ( ){ } ( ) ( ) ( ){ } 4III,22113III,2III,22111III,215 2sin24cos, ExxEExxExxF ++−++= ξξξξ , (11c) 

( ) ( ) ( ){ } ( ) ( ) ( ){ }22112III,3III,22111III,216 2cos24sin, xxEExxExxF ξξξξ +−++= . (11d) 

In Eqs. (11a)-(11d), EIII,1 to EIII,4 correspond to the amplitudes of field components from the 
reference arm whereas EIII,5 denotes the amplitude of the field component from the sample 
arm arriving at port III of the interferometer. In terms of the diffraction efficiencies of the 
gratings G1 and G2, the amplitudes of above mentioned field components are given by: 

41,134,243,224,11III, ηηηη=E ,                 (12a) 

61,136,243,224,12III, ηηηη=E ,                 (12b) 

41,134,263,226,13III, ηηηη=E ,                 (12c) 

61,136,263,226,14III, ηηηη=E ,                 (12d) 

51,125,252,225,15III, ηηηη=E .                 (12e) 

It can be seen from Eqs. (7)-(12) that the amplitude and phase of the interference signals at the 
three ports I, II, and III not only depend on the strength of individual field components taking 
part in the interference but also on the additional phase shifts from gratings G1 and G2.  

For clarity, we take a closer look at the interference signals, given by Eqs. (7a), (9a) and 
(11a), at the three output ports. It can be seen that the non-trivial phase term ( ) ( )[ ]11222 xx ξξ +  
is mutual to all the three interference terms. It, therefore, yields a trivial phase shift between 
different output ports. The non-trivial phase terms in Eqs. (7a), (9a) and (11a), which play a 
role in providing a non-trivial phase shift between the output ports, are ( )21 , xxφ′ , ( )21 , xxφ ′′ , 
and ( )21 , xxφ ′′′ , respectively. These phase terms do not depend on the path lengths and can be 
solely adjusted by shearing of the harmonically-related gratings.  
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Fig. 6. Measured phase shifts between (a) ports I & II and (b) ports I & III of a harmonically-
related gratings based modified Michelson interferometer versus shearing of grating G2 with 
respect to G1. The locations where phase difference between port I and III are equal 90o and 
270o are labeled.  

 
The only phase term that involves the path lengths di, i = 1, 2, 3, 4 is ( )12342 ddddk −+− , 

and is common to all the three interference signals. As such, it yields only a trivial phase 
between different output ports. This also illustrates that in the described scheme, the shearing 
of the gratings to achieve non-trivial phase does not change the path length relationship 
between the interference beams at the output ports of the modified Michelson interferometer.  

For experimental verification, we realized a setup shown in Figs. 4(a), and 4(b). A 
collimated beam (1/e2 diameter ≈ 1 mm) from a 633 nm HeNe laser was used in the 
experiment. We chose G1 to be the same as that used in the setup shown in Fig. 2(a) whereas 
G2 – the second harmonic grating was selected as 1200 grooves/mm blazed transmission 
grating (Thorlabs, Inc., GT25-12). The path length d1 between the gratings G1 and G2 was ~20 
cm. The reference mirror M4 was mounted on a voice coil to modulate the reference arm. The 
grating G2 was translated along the x-direction using a piezo actuator (25.5 nm/V) and 
heterodyne interference signals were acquired at the three output ports using the same 
photodetectors as used in our earlier experimental study. 

 

Table 1. Measured efficiencies of the gratings used in the setup shown in Figs. 4(a), and 4(b). These diffraction 
efficiencies were used to determine the theoretical phase shifts between different output ports of the modified 

Michelson interferometer. 

600 grooves/mm 1200 grooves/mm 

14,1η  0.001 41,1η  0.001 14,2η  0.12 41,2η  0.11 

15,1η  0.43 51,1η  0.43     

16,1η  0.28 61,1η  0.28 16,2η  0.75 61,2η  0.73 

24,1η  0.44 42,1η  0.42     

25,1η  0.23 52,1η  0.24 25,2η  0.67 52,2η  0.67 

26,1η  0.11 62,1η  0.11     

34,1η  0.14 43,1η  0.19 34,2η  0.70 43,2η  0.69 

35,1η  0.10 53,1η  0.13     

36,1η  0.05 63,1η  0.06 36,2η  0.10 63,2η  0.11 

mni ,η : Diffraction efficiency of ith grating from port m to port n. 

o90

o270
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Figure 6 shows both the measured as well as the theoretical phase differences between 
output ports of the interferometer versus shearing of grating G2 up to one grating periods. 
Table 1 shows measured diffraction efficiencies of gratings G1 and G2 (used in the setup) to 
calculate theoretical phase shifts between different ports of the interferometer. It can be seen 
that phase shift between ports I and III changes almost in a linear fashion as the grating G2 is 
sheared along the x2 direction. This ability to achieve non-trivial phase shifts illustrates the 
possibility to design gratings-based interferometer for full-field quadrature phase 
interferometry. 

This experiment does require gratings that are uniform and harmonically-related over the 
area of the incident beams. Based on the goodness-of-fit of our measurements, the gratings do 
appear to be well behaved over the area of our beams in the experiment.  

5. Summary and conclusion 

In summary, we have proposed and experimentally demonstrated the use of planar shallow 
diffraction gratings in a modified Michelson interferometric setup to achieve non-trivial phase 
shifts between different output ports. The phase shift is adjusted by simply shearing the 
gratings with respect to each other. The ability to adjust the phase shifts between different 
ports of the interferometer is a useful feature of the design for quadrature phase 
interferometry. The main advantage of the proposed method for non-trivial phase is that the 
shearing of the gratings does not change the path length relationship between interference 
beams at the output ports of the interferometer – an advantage for metrology and low 
coherence interferometry applications. Note that a single shallow diffraction grating-based 
Michelson interferometer cannot provide but trivial phase shifts between different output 
ports; hence, it is not suitable for quadrature phase measurements. 

In a proof-of-concept experiment, we have used 600 grooves/mm and 1200 grooves/mm 
shallow diffraction gratings to demonstrate the phase shift control between various ports of 
the modified Michelson interferometer. The experimental data is in good agreement with the 
theoretical results calculated for our proposed harmonically-related gratings-based 
interferometer scheme. The initial study is promising and sets the stage for future progress in 
grating based quadrature phase imaging.  

Another permutation for harmonically-related grating-based Michelson interferometer is 
to use the port 1 (instead of port 2) of the grating G2 (see Fig. 5) to realize the sample arm. 
However, this new design will generate a total of eight field components (four from sample 
arm and another four from the reference arm) at each output port of the interferometer. Here, 
an interesting question arises as whether we can also use two similar gratings (e.g., a G1G1 
combination as opposed the G1G2 combination) in the design shown in Fig. 4(a), and 4(b). As 
a matter of fact, it is possible to use two similar gratings to control phase shift between 
different output ports. However, this design will yield twelve field components (six each from 
the reference and sample arms) at each output port. The complexity of similar gratings-based 
interferometer design can be reduced if one of the mirrors, i.e., M1 or M2 is removed. This will 
reduce the total number of field components at each output port to eight. Nonetheless, the 
harmonically-related gratings-based modified Michelson interferometer proposed and 
demonstrated in this paper yields only a total of five field components at each output port and 
is, to our knowledge, the simplest gratings-based quadrature phase interferometric design. 

An additional advantage of using harmonically-related gratings (as opposed to similar 
gratings) is that they can also be fabricated or holographically recorded on a single substrate, 
making it possible to design compact imaging systems for full-field quadrature interferometry. 
Finally, we believe that the concepts of harmonically-related gratings-based interferometer 
can be easily translated to X-rays as well, making it possible to realize X-ray systems for 
quadrature phase measurements. 
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