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Abstract: We have developed a full-field high resolution quantitative phase 
imaging technique for observing dynamics of transparent biological samples. 
By using a harmonically matched diffraction grating pair (600 and 1200 
lines/mm), we were able to obtain non-trivial phase difference (other than 0o 
or 180o) between the output ports of the gratings. Improving upon our 
previous design, our current system mitigates astigmatism artifacts and is 
capable of high resolution imaging. This system also employs an improved 
phase extraction algorithm. The system has a lateral resolution of 1.6 μm 
and a phase sensitivity of 62 mrad. We employed the system to acquire high 
resolution phase images of onion skin cells and a phase movie of amoeba 
proteus in motion.  
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1. Introduction  

Observing unstained transparent biological samples with sufficiently high resolution is 
important for a wide range of biomedical studies. Besides conventional qualitative techniques 
such as Zernike phase contrast [1,2] and Nomarski differential interference contrast (DIC) 
microscopy [3], various full-field quantitative phase imaging techniques [4-13] have been 
developed recently that are well suited for this purpose. Most of these methods involve the use 
of interferometry in one form or another. Some of the prominent techniques are: 1) Phase 
shifting interferometry schemes [4-6] – where two or more interferograms with different 
phase shifts are acquired sequentially and a phase image is generated from them. 2) Digital 
holography [7-9] or Hilbert phase microscopy [10, 11] – where high frequency spatial fringes 
encoded in the interferogram are demodulated to generate the phase image. 3)  Swept-source 
phase microscopy [12] – where modulation in the interferogram generated by a wavelength 
sweep can be processed to create a phase image. 4) Polarization quadrature microscopy [13] – 
where phase images are generated by a polarization based quadrature interferometer. 

Recently, our group demonstrated a full-field phase imaging technique based on the 
substitution of a beamsplitter with a harmonically matched diffraction grating pair (G1G2 
grating) [14, 15] in an interferometer – we named the technique G1G2 interferometry. With 
this optical element substitution, we were able to create a non-trivial phase relationship 
between the different output ports of the interferometer. Conceptually, the operating principle 
shares many similarities to the multiport fiber coupler based interferometry method [16, 17]. 
As G1G2 interferometry involves a minimal change of optical elements – replacement of a 
beamsplitter, it can be potentially adapted into a wide range of interferometer systems. Phase 
imaging based on this technique involves simultaneously acquiring images from two or more 
of the output ports; the imaging speed of this technique is limited only by the cameras’ speed. 
This is an advantage over phase shifting interferometry methods, where the imaging speed is 
additionally limited by the speed of the phase shifting process. Another appealing aspect of 
this technique is that data processing is relatively simple. Yet another advantage of this 
technique is that, unlike some of the other phase techniques, its phase imaging capability does 
not require a tradeoff in field of view (see discussion in Ref. 5). Specifically, methods such as 
digital holography and Hilbert phase microscopy perform phase measurements by 
implementing a spatial sinusoidal interference – each resolvable point on the image is limited 
by the interference fringe and is by necessity several sensor pixels wide. In comparison, each 
resolvable point in G1G2 interferometry imaging can be as small as a single sensor pixel.   

Our previous implementation of the G1G2 interferometer has a couple of design issues 
that limit this technique when it is applied for high resolution imaging. Specifically, there 
were significant aberrations in the raw data image from the output ports when high resolution 
(1.6 μm) and moderate field of view (400 μm × 300 μm) were required. As a consequence, 
the coincidence mapping of raw data images is difficult beyond a certain resolution limit. 
Second, the phase computation algorithm previously employed required either the reference 

#87235 - $15.00 USD Received 6 Sep 2007; revised 4 Dec 2007; accepted 14 Dec 2007; published 19 Dec 2007

(C) 2007 OSA 24 December 2007 / Vol. 15,  No. 26 / OPTICS EXPRESS  18142



or sample beam to be much weaker than the other. This limitation can significantly impact on 
the achievable dynamic range.  

This paper reports on our recent progress. We have addressed the two abovementioned 
design issues and have developed a more robust G1G2 interferometer system. Using this 
system, we were able to acquire our first high resolution phase images of biological samples 
based on the G1G2 interferometry principle. The rest of this paper is structured as follows. In 
Section 2, we summarize the concept of G1G2 interferometry. In Section 3, we present our 
current experimental setup and discuss the means by which we reduced aberrations. In Section 
4, we present our modified phase extraction algorithm that can accommodate the usage of 
reference and sample beams of comparable strength in the interferometer. In Section 5, we 
show phase images and videos acquired with our system – this illustrates the capability of the 
G1G2 interferometer method for biological studies. Finally, we summarize our work in 
Section 6. 

2. G1G2 interferometery concept 

This section briefly summarizes the G1G2 interferometry concept. Interested readers are 
invited to read Ref. 14 and 15 for more in depth explanations. 
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Fig. 1. (a). Simple beamsplitter based interferometer: 180o phase shift between output ports; (b) 
Single shallow grating based interferometer: still 180o phase shift between output ports; (c) 
G1G2 grating based interferometer: non-trivial phase shift can be obtained. 

First, let us consider a simple interferometer, such as the one shown in Fig. 1(a). The 
detected signals at the output ports can be expressed as: 

Port 1: )cos(2/2/1 θψψ +−++= rssrsr PPPPP      (1) 

Port 2: )cos(2/2/2 θψψ +−−+= rssrsr PPPPP      (2) 

where Pr and Ps are the reference power and sample power, respectively; ψr and ψs are the 
phase of the reference beam and sample beam before incident on the beamsplitter; θ is the 
common phase shift. We note that the interference terms are 180o out of phase with each other. 
As such, it is generally impossible to extract phase information from this system without 
resorting to some form of phase encoding. An often cited reason to explain this trivial 
interference phase relationship is that the power influx and outflux from this optical system 
must be conserved – conservation requires the interference terms to be equal and opposite. 

 However, power conservation does not intrinsically limit the interference terms to be 
trivially related. Multiport optical fiber coupler based interferometry methods [16, 17] clearly 
illustrate that the existence of multiple output ports allows non-trivial interference phase 
relationship to exist between output ports without violating power conservation. These 
methods indicate the possibility of using diffraction gratings in place of beamsplitters as a 
means for achieving non-trivial interference phase relationship in a full-field interferometer, 
as a diffraction grating can diffract light in more than two directions.  

Now let us consider the shallow diffraction grating based interferometer scheme in Fig. 
1(b). As is well known, a grating can confer additional phase shifts to the diffracted beams. 
For a shallow grating, the phase shifts can be written as [15] 
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where m is the diffracted order, x0 is the displacement of the grating and Λ is the grating 
period; sgn() is the sign function. This implies that the detected signals are given by: 
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2

2
cos(2 0

11111 θππ ++
Λ

++= x
PPPPP srsr      (4) 

Port 2: )
2

2
cos(2 0

22222 θππ +−
Λ

++= x
PPPPP srsr      (5) 

where Pr1 (Ps1) and Pr2 (Ps2) are the reference (sample) powers at port 1 and port 2, 
respectively; θ is the common phase shift. The phase relationship between the interference 

terms remains trivial. However, the presence of a phase shift term 
Λ

02 xπ  that is intrinsically 

related to the diffraction grating is encouraging. As we shall soon see, the G1G2 
interferometer makes creative use of this phase shift term to achieve non-trivial phase 
relationship between interferometer output ports. 

The G1G2 interferometer replaces the simple diffraction grating in the previous example 
with a harmonically matched grating pair (G1G2 grating). The grating pair consists of two 
gratings with periods Λ1, Λ2 that satisfy Λ1=2Λ2. If the G1G2 grating is used as a beam 
splitter/combiner in an interferometer setup, as shown in Fig. 1(c), the additional phase of the 
diffracted beams φk,n (k=R, S represent the reference or sample beam; n=1, 2 is the port 
number) can be written as, according to Eq. (3), 

2

2
,

2

2

,
2

2
,0

1

1
1,12,

2

2
2,12,

1

1
1,11,21,01,

ππφφππφφ

ππφφφφ

+
Λ

−==+
Λ

−==

+
Λ

====

−−

+

xx

x

GSGR

GSGGR

    (6) 

where φm,Gn is the additional phase shift of the mth diffracted order of the grating Gn; x1, x2 are 
the displacements of  G1, G2, respectively. Thus the phases of interference signals and their 
difference are 
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12 ππ
, we will have a non-trivial phase shift 

between the output ports of the interferometer. By adjusting the relative displacement between 
G1 and G2 grating during fabrication, we can set the phase shift Δφ. The grating pair 
employed in our current experiment was fabricated by using three-beam interference on a 
holographic plate as detailed in Ref. [14]. 

3. Experiment method 

Our improved experimental setup is shown in Fig. 2. A HeNe laser (Thorlabs HRP120, 
wavelength of 632.8 nm) was split into reference beam and sample beam. In the reference 
arm, the laser was spatial filtered and expanded by objective 1 (Newport M-10X), a pinhole 
(diameter of 25μm) and lens 1 (focal length of 200 mm). The transmitted and diffracted 
reference beams were then collimated by lens 3 and 4, respectively. The focal lengths of 
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lenses 2, 3, 4 were all equal to 200 mm. In the sample arm, objective 2 (Olympus UPlanFl 
10X) and lens 3 (lens 4) made up the microscope system that imaged the sample onto the 
CCDs (The Imaging Source DMK 31BF03, 1024x768 pixels). The harmonically matched 
grating pair (G1G2 grating) served as the beam splitter/combiner. The G1G2 grating pair 
contains gratings of density 600 lines/mm and 1200 lines/mm. We measured Δφ to be equal to 
92o±8o. More details about the grating pair can be found in Ref. 14. 
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Fig. 2. Experimental setup for phase imaging. BS: beam splitter; O1 and O2: objective lenses 1 
and 2; P: pinhole; L1-4: lens 1-4; S: sample; G1G2: the harmonically matched grating pair 
(G1G2 grating) on a holographic plate. 

In this system, the geometric aberration introduced by the grating pair in the previous 
system was corrected. The imaging system in previous setup [14] is shown in Fig. 3(a); in that 
setup, the imaging lenses were placed before the grating. The inherent distortion that such 
geometry introduced can be appreciated by considering the following example. Suppose we 
are to image a point source using the scheme in Fig. 3(a). We can see that the beam will 
converge prior to transmission through the grating. As the angle of diffraction associated with 
the grating does not linearly depend on the incident angle, we can expect to observe geometric 
aberration in the image. To determine the extent of distortion, we used ZEMAX (ZEMAX 
development corp.) to simulate this scenario. In the simulation, we assumed the objective and 
the lens were perfect paraxial lens so that the aberration observed could be solely attributed to 
the diffraction grating. As shown in Fig. 3(b), when we increase the distance between the 
imaging plane and the lens, we can observe the image transit from a vertical focus (left) to a 
horizontal focus (right). This phenomenon is similar to astigmatism. Figure 3(e) shows the 
transmission image of a letter “C” pattern acquired using the system shown in Fig. 3(a), where 
the location of the imaging plane was selected to give us vertical focus. The blur in the 
horizontal direction is readily observable. 

To correct this astigmatic aberration, we employed the imaging setup shown in Fig. 3(c), 
where the grating was put between the objective and the lens. In this case, the incident light 
associated with each point on the object plane was transformed into a collimated beam at the 
grating. The collimated beams would diffract from the grating as collimated beams. These 
would then transform back to point objects in the image plane by passage through the lens. 
Our Zemax simulations confirmed this fact [see Fig. 3(d)].  Figure 3(f) shows the image of the 
same letter “C” acquired using this setup, with which we can easily see that the obvious 
astigmatism aberration had been removed. 

We experimentally determined the resolution of this imaging system to be equal to 1.6 μm 
(Sparrow’s criterion) by measuring the image profile of an effective point source (a hole of 
diameter 150 nm). The measured resolution agreed well with the theoretically calculated value 
of 1.2 μm based on the imaging system parameters.  

This updated setup confers aberrations onto the input collimated light that is used to 
illuminate the sample [see Fig. 3(g)]. This is because the collimated light will be focused by 
the objective and will diverge when it enters the grating. The aberration of background beam 
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will introduce unwanted pattern in the interferograms and unwanted phase aberration in the 
final phase image. Fortunately, we can measure and characterize this phase aberration during 
initial system calibration by removing the sample. This systematic error can then be removed 
from actual sample image measurements during data processing.  
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Fig. 3. Geometric aberration induced by the grating. (a) Previous imaging setup; (b) 
Astigmatism of the focal spots of previous setup; (c) Current imaging setup; (d) No aberration 
in the focal spot of current setup; (e) Image of letter “C” acquired by the previous setup; (f) 
Image of letter “C” acquired by the current setup; (g) Aberration of illumination beam caused 
by the grating diffraction in current setup. 

One final aberration issue that we need to be concerned about is the spatial “stretch” and 
“compression” distortion on the off-axis diffracted raw data image due to the diffraction 
process. As shown in Fig. 4, the image will be stretched in one direction and compressed in 
the other direction, and this effect is opposite for +1 and -1 order diffraction of the grating. 
This distortion in principle will affect the matching of the two CCD images. However, the 
following calculation shows that the effect is small enough and can be neglected. The 
distortion is due to the fact that the angle of diffraction associated with the grating does not 
linearly depend on the incident angle.  Mathematically, a point that is x1 away from the center 
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of object field will be mapped to a point x2 from the image field’s center where x2 is given by 
this expression:   

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −−−

df

x

d
fx

λλ 1

1

111
22 sin)sin(tansintan    (9) 

where f1, f2 are the focal length of the objective and the lens, respectively; λ is the wavelength 
of the laser; d is the grating period. Here we assume that both the objective and the lens are 
perfect paraxial lens. As x2 is not linearly dependent on x1, the resulting image will appear 
distorted. When x1 is small, Eq. (9) can be simplified as 

122

12
2

/1

/
x

d

ff
x

λ−
−=     (10) 

where x2 is proportional to x1 and there is no distortion. In our setup, f1=16.5 mm, f2=200 mm, 
λ = 632.8 nm, d = 1/600 mm. For the field of view with a maximum offset, x1 = 0.16 mm, the 
difference between the two x2 calculated by (9) and (10) is 4.5 μm, which is smaller than the 
size of a pixel on the CCDs (pixel size = 4.7 μm). Beyond this field of view, the distortion 
does cause a slight deterioration in resolution. This problem can be resolved by appropriate 
spatial rescaling of the raw data images.  
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Fig. 4. “Stretch” and “compression” distortion caused by the diffraction of the grating in the 
imaging system.  

4. Improved processing algorithm 

In the previous experiment [14], we required the reference power to be much greater than the 
sample power; this allowed us to neglect the sample power term in the detected signal and 
simplify image processing. However, this requirement necessarily restricted the dynamic 
range of our system. By requiring high reference power and low sample power, the ratio of 
the interference term magnitude to the DC term magnitude was small. This implies that the 
useful data occupied only a relatively narrow dynamic range of the CCD cameras. 

In the current experiment, we removed this restriction and performed imaging processing 
without simplifying the involved equations. This section details the processing involved. 

The detected signal in the corresponding pixels with pixel index (i,j) of the CCDs can be 
written as 
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where Pr1(i, j)and Pr2(i, j)are the reference powers at the pixels of CCD1 and CCD2, 
respectively; Ps1(i, j) and Ps2(i, j) are the sample powers at corresponding pixels of the CCDs; 

),(/),(),( 12 jiPjiPji ss=η  is the relative diffraction efficiency of the grating for the 

sample beam; A is the interference factor determined by the coherence of the laser, ideally 

A=2, in practice, the measured A is 1.9; ranabeobj jijiji θψψψ ++=Δ ),(),(),( , where 

),( jiobjψ is the optical phase change associated with presence of the sample, ),( jiabeψ  is 

the phase aberration introduced by the grating as mentioned in the previous section, ranθ  is 

some random phase attributable to environment fluctuation and independent of pixel index (i, 
j); Δφ is the nontrivial phase shift between the interference signals caused by the G1G2 
grating and is independent on the pixel index (i, j).  

The experiment procedure for phase extraction can be summarized as follows: 
1) Determine the relative diffraction efficiency η(i, j). 

2) Determine the phase aberration ),( jiabeψ  and the nontrivial phase shift Δφ. This 

involves acquiring N (we use N=100) frame pairs of the interferograms in the absence of the 
sample. For pixel (i,j) (i=1…1024, j=1…768) of the CCD k (k=1,2), we can get a time series 
yi,j,k(n), n=1…N. For different n, there is a different random phase introduced by 
environmental disturbance. Since the time series for any of the two pixels have a phase 
difference between them, if we plot one time series versus another, we will get an elliptical 
profile. For the time series from the same CCD, we can let the first pixel (i=1,j=1) be the 
reference point and compute the phase difference for each CCD pixel with respect to the 
reference point by performing elliptic fitting [18] between yi,j,k(n) and y1,1,k(n). This computed 

phase difference is equal to the phase aberration abeψ . Similarly, by performing elliptic 

fitting between the corresponding pixels from the two CCDs, yi,j,1(n) and yi,j,2(n), we can get 
the phase shift Δφ. 

3) Determine the reference power Pr1(i, j) and Pr2(i, j). 
4) Acquire phase image of the sample. This involves placing the sample into the system 

and acquiring a frame pair from the two CCDs. The detected signals of corresponding pixels 
must satisfy Eqs. (11) and (12). The only remaining unknowns are Ps1(i, j) and Δψ(i, j). 

By canceling Δψ(i, j)  from Eqs. (11) and (12), we can obtain a quadratic equation for Ps1: 
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For clarity, we omitted the functional dependency on (i, j) in the expression. This equation 
yields two solutions for Ps1. In order to find the right solution, the sample power Ps1 need to 
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satisfy some condition. As shown in the appendix A, if the real Ps1 satisfies the following 
condition, we can always use the smaller solution of Eq. (13) as our solution: 
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For the ideal quadrature phase shift, Δφ=90o and ideal coherence, A=2, the above condition 
becomes 
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This condition still requires smaller sample powers compared with the reference powers. 
However the condition is much less restricted than the requirement of previous system. 
Having obtained the solution for the sample power Ps1, we can then calculate the phase term 
Δψ by substituting Ps1 in Eqs. (11) and (12). The phase of the sample plus some uniform 

random phase is then given by aberanobj ψψθψ −Δ=+ .  

The term ranθ  tends to be constant over the entire image but it can vary in time. One 

approach to remove it from a time sequence of phase images is to look at the variation of 

ranobj θψ +  at a location in the image where it is known that objψ  is not varying. The time 

dependent variations can then be wholly attributed to ranθ . We can then subtract this value 

from each image at each time point. This is the approach we employed when we generated 
phase image movie sequences.  

We note that step 1 through 3 need only be done once during calibration.  
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Fig. 5. Compare unwrap algothms. (a) Wrapped image; (b) Unwrapped image by simple 
unwrap algorithm; (c) Unwrapped image by Flynn’s algorithm.  

As phase images are intrinsically wrapped beyond the phase range of [0, 2π], we generally 
need to unwrap the acquired images when dealing with samples beyond a certain thickness. 
Due to the presence of noise in the phase image, simple unwrap algorithm generally does not 
work well. For our experiment, we instead chose to use the Flynn’s minimum discontinuity 
algorithm [19] to unwrap the image. Flynn’s algorithm operates by identifying the lines of 
discontinuities and joining them into loops. Appropriate multiples of 2π are then added to 
each pixel enclosed by the loops to remove the phase wrap discontinuities. This unwrap 
algorithm worked well for our data. Figure 5 shows an example of the application of unwrap 
algorithms to our data. Figure 5(a) shows the wrapped phase image acquired by our system. 
Figure 5(b) shows an unwrapped phase image as generated by the simple unwrap algorithm. 
Figure 5(c) shows that the Flynn’s algorithm is capable of better phase unwrap performance. 

To characterize the phase stability of our system, we used a cover glass as our sample and 
measured the phase difference between two different spots on the cover glass. The phase of 
the spots is the average of the pixels in the spots with corresponding object size of 1.2 μm x 
1.2 μm, matching the diffraction limit of the objective lens. The sample power incident on 
each spot was 1.6 nW (port 1) and 1.5 nW (port 2). The reference power incident on each spot 
was 7.6 nW (port 1) and 3.1 nW (port 2). The exposure time per image frame was 100 μs. The 
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experiment results are shown in Fig. 6. The phase image is shown in Fig. 6(a), and the 
fluctuation of the phase difference versus time is shown in Fig. 6(b). The phase stability of our 
system is characterized by the standard deviation of the fluctuation which equals to 62 mrad 
(corresponding to 6.24 nm optical path length). 

 We can also estimate the shot noise limited phase noise of our system theoretically, as 
shown in appendix B. The estimated shot noise limit is 2 mrad, which is much smaller than 
the experimental measurement. The experimentally measured phase error can be largely 
attributed to the spatially uncorrelated power fluctuation observed in the experiment. We 
measured this power fluctuation to be ~3% for each pixel. Substituting this noise factor into 
our calculation yields a phase noise of ~ 80 mrad, which is comparable to our experimentally 
measured phase error.      

In addition to the phase stability characterization, this set of experiments revealed another 
aspect of this experimental scheme – we can see some dim fringes in the phase image in Fig. 
6(a). These fringes were caused by the relative larger phase noise near some special phase 
locations. For a simple explanation, consider the quadratic Eq. (13), aPs1

2+bPs1+c=0, where a, 
b, c are the coefficients shown in the equation, the solutions are 

acbwhere
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b
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The error of the solutions can be written as the function of the measured error of P1, P2: 
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Thus, when Δ is small, the error of the solution will be large. The fringes in Fig. 6(a) 
correspond to locations where this effect occurred.  Fortunately, in our experiments, this 
additional phase noise was relatively small (~0.2 rad) and showed up in only a small region of 
the image. 

0 5 10

-0.2

0

0.2

time (sec)

ph
as

e 
(r

ad
)

(a) (b)

std=62mradspot 1

spot 2 P
ha

se
 (

ra
d)

0 5 10

-0.2

0

0.2

time (sec)

ph
as

e 
(r

ad
)

(a) (b)

std=62mradspot 1

spot 2 P
ha

se
 (

ra
d)

 
Fig. 6. Measurement of the temporal phase stability. (a) Phase image of a cover glass, the two 
spots that are used to measure the phase stability are indicated; (b) Fluctuation of the phase of 
spot 2 with respect to spot 1 versus time, the standard deviation is 62 mrad. 

5. Imaging results 

As an initial demonstration of our system, we performed phase imaging of a phase object, 
which consisted of a “CIT” logo written on a 100 nm thick polymethyl methacrylate (PMMA). 
As expected, the intensity image shown in Fig. 7(a) had little contrast. In comparison, the 
phase image [Fig. 7(b)] had excellent contrast. Figure 7(c) shows the 3D reconstruction of the 
phase image. The measured height of a step is shown in Fig. 7(d); the thickness of the logo 
was measured to be 114±12 nm, which agreed well with the thickness measurement 
performed with a standard profilometer. 
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Fig. 7. Images of “CIT” logo by our iamging system. (a) Intensity image; (b) Phase image; (c) 
3D reconstruction of the phase image; (d) Step-height measurement. 

We next used our system to image onion skin cell (Fig. 8). The intensity and phase images 
are shown in Figs. 8(a), 8(b), respectively. Figure 8(c) shows the 3D reconstruction of the 
phase image. Again, the phase image had much better contrast than the intensity image and 
the optical thickness of the cell can be quantitatively measured from the phase image. The 
nuclei can be seen clearly in the phase image. 
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Fig.  8. Images of onion skin cells. (a) Intensity image; (b) Phase image; (c) 3D reconstruction of the phase image. 

To demonstrate the capability of our system to study biological movements and dynamics, 
we applied our system to observe the movement of an amoeba proteus. In the phase movie 
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[Fig. 9(a)], we can clearly see the nucleus and contractile vacuole of the amoeba. The frame 
rate of the movie is 10 frames/second. The movement of the food vacuoles can be seen in the 
movie. Figure 9(b) shows the corresponding intensity movie, which had much poorer contrast.  

            
 

(a)          (b) 

Fig. 9. (a). (360 KB) MOVIE: phase movie of movement of amoeba proteus. The nucleus and 
contractile vacuole can be clearly seen. In the movie, the food vacuoles are moving inside the 
amoeba. The size of one frame is 147 μm (width) x 123 μm (height) (372x312 pixels) (b) (1.66 
MB) Movie: intensity movie of movement of amoeba proteus. 

6. Summary  

We have developed an improved full-field quantitative phase imaging microscope system 
based on the use of a harmonically matched grating pair (G1G2 grating). This new system 
design significantly corrected the astigmatic aberration which had restricted the original 
interferometer design. The system also employed a new phase image processing algorithm 
which enabled a wide range of sample power to be used in the interferometer.  

With these improvements, we were able to demonstrate high resolution phase imaging 
with a measured resolution of 1.6 μm and a phase sensitivity of 62 mrad (or an equivalent 
optical path length difference of 6.24 nm). We demonstrate the utility of this interferometer by 
imaging onion samples and rendering a movie of a moving amoeba proteus.  

This phase imaging method is applicable for observing fast dynamics in biological 
samples as the image acquisition speed is only limited by the frame rate of the cameras. 
Another appealing aspect of this system is that the heart of the interferometer – the G1G2 
grating is a planar device that can be easily designed and fabricated. The feasibility of creating 
G1G2 grating lithographically or by e-beam etching, also allows for more complicated G1G2 
grating designs. For example, it may be interesting to combine Fresnel zone plate and G1G2 
grating designs to implement flat phase imaging schemes. In addition, the concept of G1G2 
interferometry can be applied to imaging at other wavelengths, such as X-ray or terahertz.   
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Appendix A: derivation of equation (14) 

The derivation for the condition where we can choose one solution out of the two solutions 
that we get from the quadratic Eq. (13) is as follows. To begin, assume the sample power 
solution is s0 and the other solution of Eq. (13) is s1, then we have 
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If we always have s1>s0, then we can choose the smaller solution of the equation and get s0 
that we want. So we should have 
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Substitute P1 and P2 from Eqs. (11), (12), where Ps1 = s0, we get 
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(A.3) 
Without loss of generality, we can let 0)sin( >Δφ , thus 
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If for all Δψ, the above equation is satisfied, we must have 
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(A.5) 
where Ps1 = s0 and Ps2 = ηs0. This is the Eq. (14). 

Appendix B: noise assessment based on system’s shot noise 

In this appendix we estimate the phase noise associated with the system in the situation where 
shot noise is the only major noise source. To simplify the problem, we assume that the 
reference powers and sample powers are the same for the two output ports. We also assume 
the interference factor A = 2 and the nontrivial phase shift Δφ = -90o. Now the power detected 
in the two output ports can be written as 

ψΔ++= cos21 srsr PPPPP     (B.1) 

ψΔ++= sin22 srsr PPPPP     (B.2) 

So 

srsr PPPPP −−=Δ 1cos2 ψ     (B.3) 

srsr PPPPP −−=Δ 2sin2 ψ     (B.4) 

We shall assume the detected power P1 and P2 contain additive Gaussian white-noise 
terms  x1, x2 with zero mean, respectively. For shot noise, the standard deviation of x1, x2 
should be20 
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where h is the Planck’s constant, ν is the light frequency, η is the quantum efficiency of the 
CCD, and τ is the exposure time. Thus as shown in Fig. B1, the phase noise can be 
approximately expressed as: 
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For a typical set of numbers for our system, Pr = 5 nW, Ps = 1.5 nW, η = 0.9, τ = 100 μs, we 
have δψ ≤ 2 mrad. 

We note that the phase noise in shot noise limited detection is more than an order of 
magnitude smaller than the phase noise (62 mrad) observed in the experiment. This 
observation indicates that phase noise in our system is dominated by other sources. One 
probable source is the amount of spatially uncorrelated laser power fluctuations that are 
observed in our system. We measured the power fluctuation to be approximately equal 3% of 
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the mean. If we substitute 21 03.0,03.0
21

PP xx == σσ  to model this power fluctuation, we 

see that the phase noise can be expressed as:   
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(B.7) 
Substituting the typical powers employed in the experiment, we find that δψ ≤ 80 mrad. This 
corresponds well with the phase error measured in the experiment. 
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Fig. B1. Schematic of the phase noise assessment. 
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