
Markov speckle for efficient random bit
generation

Roarke Horstmeyer,1∗ Richard Y. Chen,2 Benjamin Judkewitz,1 and
Changhuei Yang1

1Department of Electrical Engineering, California Institute of Technology, Pasadena CA 91125, USA
2Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena

CA 91125, USA
*roarke@caltech.edu

Abstract: Optical speckle is commonly observed in measurements using
coherent radiation. While lacking experimental validation, previous work
has often assumed that speckle’s random spatial pattern follows a Markov
process. Here, we present a derivation and experimental confirmation of
conditions under which this assumption holds true. We demonstrate that
a detected speckle field can be designed to obey the first-order Markov
property by using a Cauchy attenuation mask to modulate scattered light.
Creating Markov speckle enables the development of more accurate and
efficient image post-processing algorithms, with applications including
improved de-noising, segmentation and super-resolution. To show its
versatility, we use the Cauchy mask to maximize the entropy of a detected
speckle field with fixed average speckle size, allowing cryptographic applica-
tions to extract a maximum number of useful random bits from speckle images.

© 2012 Optical Society of America

OCIS codes: (030.6140) Speckle; (110.6150) Speckle Imaging.

References and links
1. P. A. Kelly, H. Derin, and K. D. Hartt, ‘‘Adaptive segmentation of speckle images using a hierarchical random

field model,’’ IEEE Trans. Acoust., Speech Signal Process. 36(10), 1628–1640 (1988).
2. B. Skoric, ‘‘On the entropy of keys derived from laser speckle: statistical properties of Gabor-transformed

speckle,’’ J. Opt. A: Pure Appl. Opt 10, 055304 (2008).
3. H. J. Rabal and R. A. Braga, Dynamic Laser Speckle and Applications (CRC Press, 2009).
4. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, ‘‘Physical one-way functions,’’ Science 297, 1074376 (2002).
5. Y. M. Wang, B. Judkewitz, C. DiMarzio, and C. Yang,‘‘Deep-tissue focal fluorescence imaging with digitally

time-reversed ultrasound-encoded light,’’ Nature Commun. 3, 928 (2012).
6. D. P. Kelly, J. E. Ward, U. Gopinathan, and J. T. Sheridan, ‘‘Controlling speckle using lenses and free space,’’

Opt. Lett. 32, 23 3394–3396 (2007).
7. E. Mundry, K. Belkebir, J. Girard, J. Savatier, E. Moal, C. Nocoletti, M. Allain, and A. Sentenac, ‘‘Structured

illumination microscopy using unknown speckle patterns,’’ Nature Photon. 6, 312–315 (2012).
8. O. Lankoande, M. M. Hayat, and B. Santhanam, ‘‘Scene estimation from speckled synthetic aperture radar

imagery: Markov random-field approach,’’ J. Opt. Soc. Am. A 23, 1269–1272 (2006).
9. R. T. Frankot and R. Chellappa, ‘‘Lognormal random-field models and their applications to radar image synthesis,’’

IEEE Trans. Geosci. Remote Sens. 25, 2196–2212 (2002).
10. H. Xie, L. E. Pierce, and F. T. Ulaby, ‘‘SAR speckle reduction using wavelet denoising and Markov random field

modeling,’’ IEEE Trans. Geosci. Remote Sens. 40, 195–208 (1987).
11. J. Goodman, Speckle Phenomena in Optics (Ben Roberts and Company, 2007).
12. J. C. Dainty, Topics in Applied Physics: Laser Speckle and Related Phenomena (Springer-Verlag, 1984).
13. J. Grimmett and D. Stirzaker, Probability and Random Processes, Third Edition (Oxford University Press, 2001).
14. H. Derin and P. A. Kelly, ‘‘Discrete-index Markov-type random processes,’’ Proc. IEEE 77, 1485–1510 (1989).
15. H. Rue and L. Held, Gaussian Markov Random Fields: Theory and Applications (Chapman and Hall, 2005).



16. H. Derin, P. A. Kelly, G. Veniza, and S. G. Labitt, ‘‘Modeling and segmentation of speckle images using complex
data,’’ IEEE Trans. Geosci. Remote Sens. 40(1), 76–87 (1990).

17. Y. Ait-Sahalia, ‘‘Do interest rates really follow continuous-time Markov diffusions?,’’ Tech Rp., University of
Chicago (1997).

18. A. de Matos and M. Fernandes, ‘‘Testing the Markov property with high frequency data,’’ J. Econometrics 141,
44–64 (2007).

19. S. Park and V. S. Pande, ‘‘Validation of Markov state models using Shannon’s entropy,’’ J. Chem. Phys 124,
054118 (2006).

20. B. Chen and Y. Hong, ‘‘Testing for the Markov property in time series,’’ Econ. Theory 28, 130–178 (2012).
21. T. W. Anderson and L. A. Goodman, ‘‘Statistical inference about Markov chains,’’ Ann. Math. Statist. 28(1),

89–110 (1957).
22. I. Yamaguchi and T. Zhang, ‘‘Phase-shifting digital holography,’’ Opt. Lett. 22(16), 1268–1270 (1997).
23. M. C. W. van Rossum and T. M. Nieuwenhuizen, ‘‘Multiple scattering of classical waves: microscopy, mesoscopy

and diffusion,’’ Rev. Mod. Phys. 71, 313–369 (1999).
24. T. M. Cover and J. A. Thomas, Elements of Information Theory (John Wiley and Sons, Inc., 1991), Ch. 11.
25. W. C. Swope, J. W. Pitera, and F. Suits, ‘‘Describing protein folding kinetics by molecular dynamics simulations

1. theory,’’ J. Phys. Chem. B 108, 6571–6581 (2004).
26. A. W. Marshall and I. Olkin, ‘‘A multivariate exponential distribution’’ J. Amer. Statist. Assoc. 62, 30–44 (1967).

1. Introduction

The simplest probabilistic description of an optical speckle field assumes it as an uncorrelated
random process across space. This description is valid when the field is sampled at a rate less
than or equal to the average speckle size, and is useful in many scenarios including denoising [1],
entropy analysis [2] and laser speckle imaging [3], to name a few. Often, however, this sampling
condition is not satisfied. Setups that benefit from detecting speckle enlarged across multiple
sensor pixels include those for optical encryption [4], optical phase conjugation [5], speckle
shape analysis [6], and structured illumination [7], among others. The correlations that arise
between neighboring pixels are rarely modeled exactly, complicating attempts to calculate a
detected field’s entropy, determine specifics about a scattering source or remove unwanted
speckle noise, for example. An accurate Markov model representation of these inter-pixel
dependencies can increase the accuracy and efficiency of such computational procedures.

Plainly put, a Markov process is a random sequence of states, such that the probability of
observing a particular state only depends on the properties of directly neighboring states. In the
context of speckle, the states we will be concerned with are the particular value a pixel takes on
when an optical field is detected. Neighboring states are the values detected by adjacent pixels.
Considering a speckle field in 1D, the Markov condition requires the probability of detecting a
certain value at one pixel depends only on the value detected at its two neighboring pixels, and
no others (Fig. 1(a)).

There has been some previous interest in attempting to model the speckle ‘‘noise’’ in synthetic
aperture radar (SAR) images as a Markov process [1, 8 – 10]. Doing so enables both removal of
speckle noise and SAR image segmentation. While the above references offer some mathematical
support for assuming Markov speckle (most notably [1]), their derivations are approximate for
two reasons. First, this prior work is only concerned with processing images post-capture, and
does not physically modify the imaging system to produce exact Markov speckle. Second, this
work aims to fit a Markov model to the detected speckle’s intensity, while we find an exact
solution only for the speckle’s complex field. Here we show how a simple modification to any
speckle detection setup, in the form of an apodizing mask, leads to a detected speckle field that
obeys a Markov process. Moreover, the Markov property holds as the average speckle size is
varied to cover an arbitrarily large number of pixels.

We first review the Gaussian distribution of a 1D speckle field, explain the Markov property
related to Gaussian distributions, and provide a sufficient condition for a detected speckle field
to be Markov in Section 2. In Section 3, we show one approach to realize Markov speckle by
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Fig. 1. Outline of an optical speckle field as a Markov process. (a) A 2D complex speckle
field (phase in color) is examined along one dimension. If the speckle field obeys the
first-order Markov property, the conditional dependence of the field at pixel n (blue dot)
will only depend on its immediate neighbors (red and green dots), and no other pixels. (b)
This relationship can be visualized as a transition process between field values in complex
space, or through transitions over an undirected graph.

adding a designed apodizing mask. Section 4 extends this model to 2D, and Section 5 offers a
discussion of practical limitations. The accuracy of using an apodizing mask to create Markov
speckle is then experimentally investigated in Section 6.

Finally, Section 7 explores one possible application of Markov speckle: maximizing the
number of extractable random bits from a digitally detected speckle field. Optically probing
a volumetric scatterer produces sets of speckle patterns that can be turned into unclonable
encryption keys [2, 4]. Generating and detecting large speckle spanning several pixels ensures
these random keys are reproducible. In Section 7 we demonstrate that Markov speckle of
arbitrary size exhibits an entropy-maximizing property. We then argue that such maximum-
entropy Markov speckle may lead to larger random keys for a fixed average speckle size,
potentially increasing the efficiency of current optical encryption setups.

2. Mathematical background

The following analysis is based on derivations in [11]. A coherent, monochromatic, polarized
field with many de-phased contributions leaving a scattering region is assumed as the initial
speckle field. Furthermore, attention will be restricted to a discretized representation of the field
at a set of pixels of finite size δ , assuming that the average speckle size is equal to or greater
than δ . The effects of discretization, the case of speckle size being smaller than δ and their
connection to a Markov process are discussed in Appendix A. Finally, it is assumed that the
joint probability distribution of the speckle field does not change across the detector area of
interest, leading to a homogeneous Markov model and stationary statistics.

2.1. Speckle field covariance and the attenuation mask

A complex speckle field A(x,y,z) measured at a discrete pixel location (x,y) on a distant plane z
perpendicular to the direction of propagation is the random sum of many independent phasor
components. Evolution of the field over space is a random walk on the complex plane, as in Fig.
1(b). We first consider a 1D detector along x at fixed z. The field A at one pixel is a circular
symmetric complex Gaussian random variable with probability density function (pdf)

p(A) =
1

2πσ2
0
· e−|A|2/2σ2

0 , (1)
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Fig. 2. Speckle is designed to follow a first-order Markov process using a Cauchy-distributed
apodizing mask M placed either (a) directly at the scatterer surface (z = 0) or (b) in the
aperture plane of an imaging lens with focal length f .

with σ0 = lim
H→∞

(1/2H)∑
H
h=0〈|φh|2〉, where |φ | is a random phasor [11]. Since we are concerned

with correlations between multiple pixels, Eq. (1) can be transformed to a complex random
vector AAA of the speckle field at a set of N neighboring pixels along x. As each element of AAA
remains circular symmetric in the presence of correlations, the pdf of the circular symmetric
complex Gaussian speckle vector AAA is zero-mean Gaussian:

p(A1, . . . ,AN) = p(AAA) =
1

πNdet(JJJ)
· e−AAA∗JJJ−1AAA, (2)

where JJJ is the covariance matrix of the complex field AAA representing the correlations between
all N pixels. By definition, JJJ is a positive definite symmetric matrix. JJJ−1 is often referred to as a
precision matrix.

Within the context of optics, JJJ is also referred to as the complex mutual intensity function,
or degree of coherence function, of the speckle field at plane z. This coherence function is
expressed as JJJ(x1,x2) = 〈A(x1)A∗(x2)〉, where angular brackets denote an ensemble average of
detected fields scattered from z = 0 (Fig. 2). As shown in [12], the coherence function JJJ(x1,x2)
is a weighted integral of a function M(η) that describes the illuminated area’s shape at the
scattering surface:

JJJ(x1,x2) =
k

λ 2z2 ·
∫
|M(η)|2 · exp

(
2πj
λ z
·
(
η(x1− x2)

))
dη , (3)

with wavelength λ and wavenumber k. Equation (3) neglects a constant phase factor and assumes
an unresolvable microstructure surface from plane z. The illuminated area shape at the scatterer is
determined by an amplitude-attenuating mask M(η) placed at the scattering material’s surface. A
nearly identical relationship is found if an imaging setup is used instead of free-space propagation
and the mask M(η) is inserted at the aperture plane (Fig. 2(b)). Substituting ∆x = x1− x2 into
Eq. (3) leads to a scaled Fourier transform relationship between the mask M(η) and the speckle
field autocorrelation at plane z:

JJJ(∆x) =
k

λ 2z2 ·F ∆x
λ z ,η

[
|M(η)|2

]
, (4)

where F is the Fourier transform operator. Finally, it is useful to define the average speckle
size lc as the width of the autocorrelation JJJ(∆x)’s main lobe for an open (unmodified) aperture
of width w. Notice that speckle’s multivariate distribution Eq. (2) is fully characterized by
the autocorrelation function JJJ(∆x). Also, from Eq. (4) it is clear the mask function M(η)
uniquely determines JJJ(∆x). Thus, our goal is to first establish a sufficient condition on JJJ(∆x)
that guarantees Markov speckle, and then to manipulate M(η) to ensure JJJ(∆x) satisfies this



condition. We derive the correct mask function M(η) for Markov speckle in Section 3, and
experimentally place this mask at a scatterer’s surface to test its performance in Section 6.

2.2. The Markov property

A sequence of random variables obeying the homogeneous Markov property is described by a
fixed transition probability that dictates transitions between immediately neighboring events.
A good introduction to Markov random processes can be found in [13]. We continue to limit
our attention to a 1D optical field A across an adjacent set of N pixels AAA = (A1, . . . ,AN). The
2D case is examined in Section 4. The discretized complex values each pixel detects define
the finite state space S of the random process. A detected speckle field AAA with values in S is a
first-order unilateral Markov process, or a Markov chain, if the conditional probability satisfies

P(An|An−1, . . . ,A1) = P(An|An−1). (5)

The one-sided conditioning in Eq. (5) must hold for all n≥ 1. We are primarily interested in
first-order conditioning since it offers the most compact description of a correlated random
process and lends useful properties to entropy maximization. Unless otherwise stated, future
references to Markovity will imply first-order conditioning. Since speckle is a spatial process,
the first-order bilateral Markov property for values on either side of each pixel must be satisfied:

P(An|An−1, . . . ,A1,An+1, . . . ,AN) = P(An|An−1,An+1). (6)

Also, a Markov process corresponding to a spatially stationary speckle field is homogeneous,
that is, P(An|An−1,An+1) = P(A2|A1,A3) for all n. For completeness, assumed Markov processes
are also aperiodic, irreducible and reversible. Finally, a transition matrix PPP is useful when repre-
senting the evolution of a homogeneous unilateral Markov process. PPP tabulates the conditional
probabilities of transitioning from any state α to any state β at an immediately neighboring
pixel: PPP(α,β ) = P(An = β |An−1 = α). An important equation that the matrix PPP must satisfy is
the Chapman-Kolmogorov equation [13], which we use in Section 6:

PPPmn = PPPmv ·PPPvn. (7)

Here, v is an intermediate pixel between pixels m and n, and PPPmv and PPPvn are the transition
matrices from pixel m to v and pixel v to n, respectively.
Three characterizations of Gaussian Markov processes: A sequence of random variables
that satisfies Eq. (6) is called a strict-sense Markov (SSM) process. A weaker sense of Markovity,
termed wide-sense Markov (WSM), relies upon a neighbor-dependent conditioning defined
through the conditional mean. A random process is first-order bilateral WSM if and only if the
linear minimum mean squared error (MSE) estimate satisfies

Ê[An|An−1, . . . ,An−p,An+1, . . . ,An+q] = Ê[An|An−1,An+1], (8)

for p,q > 1, where Ê is the minimum MSE estimator of the random process, given the condi-
tioning. We can equivalently characterize a first-order bilateral WSM process in terms of an
autoregressive representation:

An = ∑
k=−1,1

ρkAn−k +Un, (9)

where the {ρk} are coefficients and {Un} are independent Gaussian random variables such that
Un and Am are independent for n 6= m.

Equation (2) shows that a speckle field is a multivariate Gaussian random process. As shown
in detail in [14], a Gaussian process is SSM if and only if it is WSM. Thus, Eq. (6), Eq. (8)
and Eq. (9) offer equivalent definitions of a Gaussian speckle field’s Markovity. We will use



Eq. (8) to assist us in experimental confirmation of Markov speckle, while Eq. (9) will lead us to
a definition of maximum speckle entropy in Section 7.
Conditional probability of Gaussian processes: A multivariate Gaussian process has the
unique property that its second-order statistics, tabulated by the covariance matrix JJJ, fully
describe its dependence relationships. Specifically, if J−1

nm = JJJ−1(n,m) = 0 then pixel n and m
are independent, conditioned on all other pixels [15]. This special property is exhibited by the
conditional pdf of speckle field value An at pixel n, given field values Am at all other pixels:

p(An|Am,n 6= m) =
J−1

nn

π
· exp

(
− J−1

nn ·
∣∣∣An + ∑

m 6=n

J−1
nm

J−1
nn
·Am

∣∣∣2). (10)

A similar expression is in [1] and [15]. To satisfy the first-order Markov property, Eq. (10)’s
conditional probability of An must only depend on An−1 and An+1. Thus, the summands cor-
responding to m with |m−n|> 1 on the right hand side of Eq. (10) should disappear. This is
achieved when all entries J−1

nm are zero except those between the matrix JJJ−1’s super-diagonal
and sub-diagonal. Strategies to ensure that JJJ−1 is tridiagonal are examined next.

3. Markov speckle in 1D

This section discusses two scenarios under which a detected speckle field obeys the Markov
property: a limiting case where the average speckle size does not exceed one pixel, and a
designed case that is independent of speckle size. As noted above, Markov speckle must have a
tridiagonal precision matrix JJJ−1. While small speckle satisfies this condition trivially, for large
speckle we modify JJJ−1 by shaping the optical field with a designed attenuation mask M(η).
A. Limit of small speckle: Speckle with an average size lc less than the detector pixel size δ

obeys the Markov property (Appendix A). The value detected by each pixel will be uncorrelated,
leading to a diagonal covariance matrix JJJ and precision matrix JJJ−1:

JJJ = σ
2
0 · I → JJJ−1 = I/σ

2
0 , (11)

where I is the identity matrix. A diagonal JJJ−1 indicates no conditioned variables appear on the
left side of Eq. (10). A discrete speckle field AAA with diagonal JJJ is a purely random process.
B. Speckle with designed correlation: A speckle field with average size lc larger than one
pixel width δ can obey the first-order Markov property only when its precision matrix JJJ−1 is
tridiagonal. A tridiagonal JJJ−1 transforms Eq. (10) to

p(An|Am,n 6= m) =
J−1

nn

π
· exp

(
−J−1

nn · |An +B1An−1 +B2An+1|2
)

= p(An|An−1,An+1), (12)

where B1 = J−1
n,n−1/J−1

nn and B2 = J−1
n,n+1/J−1

nn . This conditional probability follows the bilateral
Markov property Eq. (6). We show in Appendix B that a spatially stationary (A1, . . . ,AN)
also satisfies the unilateral Markov property Eq. (5). Thus, any stationary speckle field with
a tridiagonal precision matrix JJJ−1 is a first order Markov process of either type. We note the
precision matrix of gth order Markov processes must have non-zero entries only between the
positive and negative gth diagonals. A covariance matrix JJJe of the following exponential form
generates a tridiagonal precision matrix:

JJJe = σ
2 ·


1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

. . . . . . . . . · · ·
. . .

ρN−1 · · · ρ2 ρ 1

 . (13)
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Fig. 3. Speckle as a second-order Markov process in 2D with a neighborhood defined over
8 pixels (here only speckle amplitude is displayed). Independent of average speckle size,
the conditional probability of each pixel in this Markov speckle field only depends on these
8 neighbors.

The corresponding inverse JJJ−1
e is

JJJ−1
e =

1
σ2(1−ρ2)

·


1 −ρ 0 · · · 0
−ρ 1+ρ2 −ρ · · · 0
0 −ρ 1+ρ2 · · · 0
. . . . . . . . . · · ·

...
0 · · · 0 −ρ 1

 . (14)

Here, σ =
√

2σ0 and ρ are constants. For shift-invariant speckle, the exponential covariance
matrix in Eq. (13) can be expressed as a one-dimensional autocorrelation function:

JJJe(∆x) = σ
2 ·ρ |∆x| = σ

2 · e−γo|∆x|, (15)

where γo = − ln(ρ). As expressed in Eq. (4), JJJe(∆x) is fully characterized by the attenuation
function M(η) of an apodizing mask. Substituting Eq. (15) into Eq. (4) and taking the in-
verse Fourier transform, we obtain the following sufficient condition on M(η) to guarantee a
tridiagonal precision matrix JJJ−1

e :

|M(η)|2 = (σλ z)2

k
γ2

η2 + γ2 , (16)

where γ =− ln(ρ)/λ z. Apart from the constant pre-factor, Eq. (16) describes a Cauchy distribu-
tion with respect to η . Placing an amplitude apodizing mask M(η) following Eq. (16) at the
scatterer surface in a free-space speckle detection setup leads to an exponential autocorrelation
JJJe(∆x) of the speckle field a sufficient distance z away, which obeys the Markov property. The
same holds for speckle in the imaging setup in Fig. 2(b) with a Cauchy mask placed at the
aperture plane. This amplitude-only mask simply shapes the speckle pattern in such a way that
its autocorrelation function across many pixels can be recursively described using one parameter
(ρ), leading to first-order Markov conditional probability relationships.

4. Markov speckle in 2D

The above analysis also extends to form 2D speckle patterns into Markov processes. To explain
how, we introduce the concept of a Markov Random Field (MRF). We define an MRF over a
rectangular lattice L, which here is the 2D pixel array that detects the speckle field (indexed by
(i, j)). Also, a neighborhood set Ψ associated with L is defined (formally) as Ψ = {Ψi j ⊂ L :
(i, j)∈ L}, where Ψi j is a set of neighbors of (i, j). Informally, the neighborhood of pixel (i, j) is
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a set Ψi j of nearby pixels that does not include (i, j). For example, the first-order neighborhood
of any pixel (i, j) contains the 4 pixels it shares an immediate border with (Fig. (3)). We can
extend our 1D Markov process definition to describe a 2D MRF by limiting the conditional
dependence of pixel (i, j) to its neighborhood:

P(Ai, j|Ak,l ,(k, l) ∈Ω) = P(Ai, j|Ak,l ,(k, l) ∈Ψi, j). (17)

Here, Ω is a finite subset of pixels in the lattice that contains Ψi, j but not (i, j). Equation (17)
describes a special type of SSM field. As with the 1D case, we can also characterize a WSM
process in 2D in terms of a bilateral autoregressive form,

Ai, j = ∑
(k,l)∈Ψi, j

ρi−k, j−l ·Ak,l +Ui, j. (18)

Here, {ρk,l} is a set of correlation coefficients and {Ui j} are independent random processes such
that Ui, j and Ak,l are independent for (i, j) 6= (k, l).

Since speckle is Gaussian, a 2D Markov speckle pattern on L that satisfies Eq. (17) belongs to
a subclass of MRF, known as a Gaussian Markov Random Field (GMRF). As with the SSM and
WSM equivalence in 1D, Eq. (17) and Eq. (18) also offer equivalent characterizations of 2D
speckle as a GMRF [15]. For a second-order 2D Markov process, the right-hand side of Eq. (18)
sums over the 8 immediately surrounding neighbors of pixel (i, j). Assuming generation from a
spatially symmetric x-y separable correlation function, the sum simplifies to

Ai, j = ρ(Ai−1, j +Ai+1, j +Ai, j−1 +Ai, j+1)

+ρ
2(Ai−1, j−1 +Ai−1, j+1 +Ai+1, j−1 +Ai+1, j+1)+Ui, j. (19)

This separable correlation function is optically created by a separable apodizing mask,

|M(η ,ξ )|2 = (σλ z)4

k2

(
γ2

η2 + γ2

)(
γ2

ξ 2 + γ2

)
, (20)

where again γ =− ln(ρ)/λ z. From Eq. (19), a 2D speckle Markov process will depend on its 4
immediate neighbors (first-order neighborhood) and to a lesser extent its 4 diagonal neighbors
(second-order neighborhood) assuming ρ < 1. The separable form Eq. (20) of the apodizing
mask is the most direct method of achieving Markovity for 2D speckle. Designing non-separable
and higher-order Markov processes is possible following further investigation into GMRF
theory [14, 15].



5. Practical considerations for Markov speckle

Creating a speckle field that exactly follows the Markov property is limited in practice by several
experimental conditions beyond the introduction of noise. First, the derivation of Eq. (16) and
Eq. (20) assume an optical geometry that extends to infinity in both directions η and ξ . A
limited mask baseline w (i.e., a finite aperture width) cuts off the tail of the Cauchy function
equation, generating an exponential correlation function that deviates from an ideal curve (Fig. 4).
Although deviations are small, a modified Cauchy function may be solved for via an optimization
procedure to better approximate this desired exponential autocorrelation.

Second, spatial discretization effects prevent realization of an exact Markov relationship.
Effects caused by a discrete pixel size are discussed in detail in Appendix A. For large speckle,
these effects are minimized with an increase in average speckle size for a fixed pixel size. On
the other hand, small speckle (less than one pixel) obeys the Markov property regardless of the
shape of its correlation function. Digitization of the optical field into discrete values does not
fundamentally limit the creation of an exact Markov sequence. Transition probabilities can be
determined for a discrete state space of any size, often set by the bit depth of the sensor.

Third, we note that since the speckle field in the above derivations is complex, it has a complex
Markov state space. This does not present any fundamental limitations in establishing Markovity.
A transition matrix can be created by labeling each complex state with a particular value to
jointly describe the field amplitude and phase, or the state space may be defined as the real
and/or imaginary field value. Note that the mask in Eq. (20) will not cause speckle intensity to
behave as Markov. The observation that speckle’s complex field will generally follow Markov
assumptions more closely than its intensity was first suggested in [16]. We explore in detail
how the intensity connects to an unobservable Markov process through a squaring operation in
Appendix C.

6. Experimental verification

This section first introduces an intuitive test that measures the degree to which a large dataset
follows the Markov property. Then, both simulated and experimental data demonstrate how
Cauchy-masked speckle performs better on this test than speckle fields attenuated by other mask
functions.

6.1. Chapman-Kolmogorov validation equation

In general, it is difficult to offer an exhaustive proof that a large sequence of data obeys the
Markov property. A full test of bilateral Markovity for a 1D data sequence must consider the
validity of,

P(An|An+1,An−1,An−m) = P(An|An+1,An−1) (21)

for all values of m and n. Considering all possible lags m is computationally infeasible for
large random sequences. Instead of an exhaustive proof, a test previously explored with large
datasets [17 – 19] uses the Chapman-Kolmogorov equation to check for properties consistent
with a Markov process. Referring to Eq. (7), we will test if the equality

PPPn,n−2 = PPPn,n−1 ·PPPn−1,n−2 (22)

holds. Equation (22) is a necessary condition for a homogeneous Markov process. This test’s
main benefit is it only requires computing and storing first-order conditional relationships,
reaching statistical significance with less data than other second-order tests [20]. Second, it
offers the ability to visualize performance errors in the three transition matrices.

A detailed discussion of the validity of using the Chapman-Komolgorov (CK) test to verify
Markov speckle is presented in Appendix B. The first assumption required to derive the CK
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Fig. 5. Diagram of the experimental setup used to generate correlated speckle field measure-
ments. (a) K random speckle fields are generated via phase-shifting holography by imaging
K random SLM patterns onto a volumetric scatterer. (b) Estimates of the three transition
matrices in Eq. (22) are formed by vectorizing and processing the detected speckle fields.

test Eq. (22) from Eq. (21) is a monotonically decreasing correlation function JJJ(∆x), valid
for all mask functions we test (although counter-examples can be constructed [20]). Second,
we assume a spatially stationary field to show speckle obeys both the unilateral (Eq. (5)) and
bilateral (Eq. (6)) Markov property.

The three transition matrices that comprise the CK test must be estimated from recorded
speckle field data. The maximum likelihood (ML) estimator for a stationary transition matrix
P̂PP(α,β ) from a set of statistics is P̂PP(α,β ) = T (α,β )/∑β ′ T (α,β ′), where T (α,β ) represents
the number of observed transitions from state α to state β (i.e., pixel value α to pixel value
β ) [21]. This linear estimate is simply an average transition rate between different pixel values.
It is direct to show the CK test equation based on the ML estimator is equivalent to our WSM
definition in Eq. (8) considering three states.

ML estimates for each of the three transition matrices in Eq. (22) can be constructed by
sweeping through detected speckle and counting the number of transitions T (α,β ) from speckle
field value α to β , either at adjacent pixels (PPPn,n−1, PPPn−1,n−2) or at alternate pixels (PPPn,n−2).
The ergodic theorem guarantees this sweeping process is equivalent to constructing a condi-
tional mean estimator over many independent speckle field realizations. A robust expectation
measurement is created by repeating the sweep process over a large set of independent images
following identical statistics (Fig. 5).

Given a set of transition matrix estimates, we define the following error metric r based on
total variation (TV error) to measure how well the data sequence satisfies the CK test Eq. (22):

r =
1

2|S|
·∑

α,β

∣∣P̂PPn,n−2(α,β )−
(
P̂PPn,n−1 · P̂PPn−1,n−2

)
(α,β )

∣∣, (23)

where |S| represents the size of the state space. When r is zero, the sequence obeys the Markov
property exactly.

6.2. Experimental setup and procedure

The experimental setup used to verify a masked speckle field follows a first-order Markov
process via Eq. (22) is diagrammed in Fig. 5(a). A solid state 532nm CW laser is split into an
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Fig. 6. An example set of transition matrices for the case of speckle modulated by a square
aperture mask (unmodified speckle). (a) Transition matrices generated through simulation
of square-masked speckle. (b) Transition matrices found experimentally. (c) Speckle field
autocorrelation functions for simulated and experimental data. (d) Example square-masked
speckle field data used for these plots.

object and reference arm (both spatially filtered and collimated). The object arm is first incident
onto an amplitude-modulating spatial light modulator (SLM) displaying a random binary pattern
bt (3.3cm LCD, 1920x1080 pixels). After removal of higher diffraction orders with a filtered 4 f
setup, the randomized object field is imaged onto the back surface of a volumetric scattering
material (25mm2 opal diffusing glass). The field on the opposite side of the scatterer (front
surface) is assumed to be delta-correlated, serving as the speckle field source.

A patterned grayscale apodizing mask M(η ,ξ ) is positioned directly adjacent to the scatterer
front surface (Kodak LVT-exposed on film at 2032dpi, Bowhaus Printing). After passing through
the mask, the speckle field propagates a distance z to a CMOS detector (1936 x 1456 pixels,
4.54µm width). An electro-optic phase modulator (EOM) is used to phase-shift the reference
plane wave by π/2 four times before recombination in a phase-shifting digital holography setup.
An estimate of the speckle field phase is generated from four phase-shifted intensity images via
the phase recovery equation [22]. The amplitude of the object wave is solved for with a similar
equation (pixels where a division by 0 occurs are ignored).

Displaying a different binary pattern bt+1 on the amplitude SLM leads to the measurement
of an independent speckle field AAAt+1. Displaying 100 different random amplitude SLM images
builds a 1936 x 1456 x 100 pixel dataset of complex field measurements, which are unwrapped
into a vector of approximately 108 elements after windowing out nonuniform image areas. The
scanning procedure discussed in the previous subsection is then applied to this vector (ignoring
transitions at image edges and between images) to generate the three transition matrix estimates
P̂PP and r in Eq. (23).

6.3. Results

Here we demonstrate that Cauchy-masked speckle follows Markov statistics more closely than
speckle that passes through other mask functions. Since the Markov TV error r depends both
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Fig. 7. An example set of transition matrices for the case of speckle modulated by a Cauchy
function mask in the same layout as Fig. 6. Note the R32R21 and R31 matrices match more
closely in width and slant than those generated by the square mask in Fig. 6, leading to
difference matrices ∆P31 and ∆R31 that are closer to 0.

on speckle size and correlation function shape, it is measured as a function of the speckle’s
normalized correlation area, a = |∑JJJ(∆x)/JJJ(0)|. The correlation area a and size of main lobe lc
are proportional to propagation distance z for a given mask (see Eq. (4)). Likewise, a and lc are
both inversely proportional to mask parameters ρ and w.

We use two different Markov state space definitions to populate a transition matrix PPP with
complex field measurements. First, the complex field’s amplitude and phase is concatenated into
a single state for a complete description of the Markov process (complex state space). Second,
only the real value of the field is used to create a state space half as large (real state space).
Transition matrices for the real state space are easier to visualize but do not offer a complete
description of the Markov process.

Figure 6 displays complex and real transition matrices used by the CK test Eq. (22), including
(from left to right) PPPn,n−1, PPPn,n−1PPPn−1,n−2, PPPn,n−2 and (PPPn,n−2−PPPn,n−1PPPn−1,n−2). The right-
most matrices offer a visualization of error under the Markov assumption. Transition matrices
in Fig. 6(b) are created experimentally using a square open aperture of width w = 0.8cm with
the detector at z = 22cm, making a = 5.54. The PPP matrices contain transition data for the
complex state space after the field is discretized into 16 amplitude (A) bins and 8 phase (φ ) bins
(|S|= 128). The RRR matrices display the same data for the real state space, discretized into 64
states. The matrices in Fig. 6(a) are created via simulation of speckle through a square mask
with similar parameters (details below). The speckle correlation functions obtained through
experiment and simulation at this distance are in Fig. 6(c). TV error for the square-masked
speckle is r = 0.090 in experiment and r = 0.088 in simulation.

Figure 7 contains an identical set of plots except with the square mask replaced by a Cauchy
apodizing mask following Eq. (20) (w = 1cm, γ = w/8). The detector distance was slightly
varied to z = 20cm to achieve roughly the same correlation area as with the square mask
(a = 5.56). The difference matrices on the right, proportional to r, are plotted on the same scale
as those for the square mask in Fig. 6 and demonstrate reduced variation. TV error for the
Cauchy-masked speckle is r = 0.061 in experiment and r = 0.058 in simulation.
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Fig. 8. Plots comparing Markov TV error vs. speckle size for a Cauchy, Gaussian and square
apodizing mask. Speckle generated via the Cauchy mask exhibits a lower TV error and thus
is in closer agreement with a Markov process.

The simulation model used above is based on the transmission matrix formalism of scat-
tering [23]. Scattering is modeled by multiplication of a complex random Gaussian matrix
with many independent random incident field vectors. The effects of the apodizing mask at the
scatterer surface, including the windowed aperture effects discussed in Section 5, are added by
convolution along the scattering matrix columns. The correlation area a is set by the area of the
convolution kernel. Simulations were run over approximately 108 random variables.

To demonstrate that Cauchy-masked speckle of arbitrary average size remains a Markov
process, we measure the error metric r for speckle obtained with 5 different correlation areas
a. This is experimentally achieved by varying z to 5 distances per mask. The results of this
experiment are shown in Fig. 8. A w = 1cm Gaussian apodizing mask is also compared to
the square mask and Cauchy mask described above (all with similar total transmission) to
demonstrate that Markovity is highly dependent upon mask shape. In both simulation and
experiment, r slowly decreases with an increase in a, which is a result of the transition matrices
becoming increasingly diagonal with larger speckle. However, the derived Cauchy mask creates
speckle that more closely follows Markov statistics, independent of speckle size.

6.4. Discussion

In both simulation and experiment, Cauchy-masked speckle has a significantly lower TV error r
than un-masked or Gaussian-masked speckle. This demonstrates that speckle can be optically
designed to follow the Markov property with increased accuracy. This trend is independent
of average speckle size. However, we observe that unmodified speckle and speckle apodized
by radially decreasing masks are also roughly Markov. Dominant sources of error include the
finite extent of the apodizing mask and pixel discretization effects (included in simulation).
Differences between simulation and experiment can be mostly attributed to the unstable nature
of the phase-shifting digital holography setup, especially when measuring speckle with a small
correlation area a. Further issues include a possible global phase variation across the sensor, loss
of dynamic range from using a reference beam, imperfect absorption by mask elements, and
inaccuracies in modeling the volumetric scatterer under the transmission matrix formalism.

7. Application: Entropy maximization

Markov speckle can be immediately applied to improve speckle removal algorithms (where it is a
common assumption [1, 8, 10]), or offer an additional constraint to enhance speckle-based super-
resolution reconstruction [7], for example. In this section, we focus on the application of Markov
speckle to random bit generation. Recent work demonstrates that one can use speckle to create
highly random yet reproducible sequences of bits [2, 4]. These random speckle keys are used in
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cryptographic applications including secure identification, authentication and communication
key establishment. Detecting speckle with an average size greater than several pixels is required
by these setups to ensure the field pattern is experimentally reproducible in the presence of
noise. The number of useful random bits that can be extracted from a detected speckle field
is commonly assumed to be an increasing function of its entropy, as discussed in [2]. We
demonstrate that for a fixed average speckle size lc, the entropy of a detected speckle field is
maximized when a Cauchy mask is used to create Markov speckle. This, in turn, can allow
speckle encryption setups to increase their efficiency of random bit generation.

The entropy of a real joint Gaussian distribution of N variables in 1D with covariance matrix JJJ
is given by, h(N (0,JJJ)) = 1

2 log
[
(2πe)N ·det(JJJ)

]
, where det denotes determinant [24]. Similar

to the real Gaussian case, the covariance matrix of a circular symmetric complex Gaussian
process also determines its entropy. For a complex speckle process AAA = XXX + jYYY , the concatenated
vector [XXX ;YYY ] follows a multivariate Gaussian distribution with covariance matrix

1
2

[
Re(JJJ) Im(JJJ)
−Im(JJJ) Re(JJJ)

]
=

1
2

[
JJJ 0
0 JJJ

]
. (24)

Here, we apply the assumption that the covariance matrix JJJ is real. A real JJJ is created by a
symmetric apodizing mask function M(η), already assumed in Section 4. Since this modified
covariance matrix indicates XXX and YYY are uncorrelated, the entropy of a correlated speckle field
AAA over N pixels is

h(AAA) = h(XXX ,YYY ) = h(XXX)+h(YYY ) = log
[
(2πe)N ·det(JJJ/2)

]
. (25)

We use Eq. (25) to calculate the entropy of speckle fields generated by several different mask
functions, shown in Table 1. Parameter selection for these masks is discussed below.

Burg’s maximum entropy theorem [24] states that the maximum entropy rate stochastic
process satisfying the autocorrelation constraints JJJ(∆x) = ρ∆x for ∆x = 0,1...g is the gth order
Gauss-Markov process in the form of Eq. (9), where the Un are i.i.d.∼ N (0,σ2

0 ). Since a
circular symmetric complex Gaussian process is separable into two uncorrelated real Gaussian
processes given a real covariance matrix, this theorem directly applies to speckle fields generated
from a symmetric mask function M(η). To select the appropriate ρ∆x to satisfy this theorem’s
conditions, we note that speckle is often approximately assigned the single parameter of ‘‘average
size’’ in many applications (e.g., [2, 8]), indicating just one parameter ρ1 can be fixed. Many
setups to this point generate speckle through an unmodified aperture, which in 1D corresponds
to a rect function. Thus, ‘‘average size’’ is often assumed to imply the main lobe width of the
resulting speckle’s sinc autocorrelation function lc, related to the aperture width w by lc = λ z/w



(Fig. 9). Assuming this relationship, a single ρ1 parameter tied both to average speckle size and
aperture width is determined as,

ρ1 = sinc(δ/lc) = sinc(wδ/λ z). (26)

Given a speckle field generated through an open aperture of fixed width w, we conclude that
first-order Markov speckle designed by inserting the Cauchy apodizing mask in Eq. (16) using ρ

from Eq. (26) will maximize the speckle’s entropy. Parameters for other correlation functions in
Table 1 are determined through a similar requirement that the first neighboring pixel’s correlation
equals ρ1, and all exhibit lower entropy. Since the CK test in Section 6 suggests but does not
prove Markovity, we may interpret the trends in Table 1 as additional evidence that the Cauchy
mask is able to produce optimally Markov speckle. Using the similarity of Eq. (9) and Eq. (18),
the above analysis also extends to support a maximum entropy theorem in 2D.

8. Conclusions and future work

The addition of an amplitude-modulating mask following a Cauchy distribution at a scattering
surface creates speckle satisfying first-order Markov conditions. An experimental test offers
support to this claim. The entropy of a speckle field with a fixed average speckle size is
maximized when this mask is used, leading to more efficient speckle-based random bit generation.
Other applications that may benefit from Markov-designed speckle include those in which
speckle is viewed as a source of noise (e.g., SAR imagery, ultrasound, and digital holography).
Optically modifying the speckle to follow Markov statistics at the detector will assist in its digital
removal, as discussed in [1,9,10]. Furthermore, general modification of speckle’s autocorrelation
function to a desired curve, as with modifications to the point-spread function of a camera, may
enable improved depth estimation or superresolution by image post-processing. Finally, several
fundamental properties of Markov speckle, including masks that generate higher-order Markov
processes and methods of modeling speckle intensity as a hidden Markov process, have yet to
be fully explored and may lead to interesting insights.

Appendix A: Pixel sampling effects on speckle’s autocorrelation

The detection of a continuous function A(x) by a discrete pixel lattice causes the second-
order statistics of A(x) to deviate slightly. We represent the detection process as a convolution
operation with a pixel transfer function Π(x), assumed to be a rect function of width δ :

A0(x′) =
∫

A(x) ·Π(x−δx′)dx =
1
δ

∫
A(x) · rect

(
x−δx′

δ

)
dx, (27)

where A(x) and A0(x) represent continuous and detected optical intensity, respectively. Since
our experiment uses four discrete intensity measurements to compute a complex field, we
will assume this convolution relationship also holds for a computed complex A and A0. Pixel
modulation in the spatial frequency domain is

Â0(νx′) = Â(νx) · Π̂(δνx) = Â(νx) · sinc(δνx), (28)

where the hatted functions represent a Fourier transform to spatial frequency coordinates νx. A
discrete field is represented as a sampled version of A0 and Â0 following Shannon’s sampling
theorem. The mean of the detected complex field is unchanged by the above sampling process
(Eq. (28) indicates 〈A0(x′)〉= 0 given 〈A(x)〉= 0). Expressing the Fourier transform F of the
sampled autocorrelation function JJJ0(∆x) in terms of A shows effects of pixelization:

Ĵ0(νx) = F [JJJ0(∆x)] = F
[(

A0(x′)?A∗0(x
′)
)
(∆x)

]
(29)

= F
[(

A(x)?Π(x)
)
?
(
A∗(x)?Π

∗(x)
)]

= ĴJJ(νx) · sinc2(δνx). (30)



Here, ĴJJ is the Fourier transform of the un-sampled autocorrelation JJJ and ? denotes convolution.
The squared sinc function represents pixelation effects with approximate main lobe width 1/δ .
Sampling effects become clear in two limiting cases. First, speckle fields with an autocorrelation
width lc spanning many pixels (i.e., large average speckle size) have a band-limited power
spectrum with support narrower than 1/δ . In this limit the effect of discretization is negligible:
limlc→∞ ĴJJ0(νx) ≈ ĴJJ(νx). As long as the average speckle size extends across several pixels
(lc > δ ), approximating JJJ(∆x) with a discretely sampled JJJ0(∆x) remains accurate.

Second, in the limit of a small average speckle size, the pixel power spectrum cuts off the
speckle field’s autocorrelation: limlc→0 ĴJJ0(νx) = sinc2(δνx). The modified autocorrelation width
in this limit becomes l

′
c = δ , the pixel width. The discretized covariance matrix in the small

speckle limit thus becomes JJJ = σ2
0 · I, the diagonal covariance matrix used to justify Markovity

in the small speckle limit in Section 3.
Note that although each pixel integrates over multiple speckles when lc < δ at the detection

plane, the first-order statistics of the random process AAA will not change (the sum of correlated or
uncorrelated Gaussian random variables remains Gaussian). Thus, for very small speckle with
lc ≤ δ , the uncorrelated multivariate distribution will transform Eq. (2) into

p(AAA) = p(A1,A2, ...An) = p(A1) ·p(A2) · · ·p(An), (31)

where each Ai follows the circular symmetric complex univariate Gaussian distribution Eq. (1).
The factorization of Eq. (31) indicates small speckle with lc ≤ δ follows an i.i.d. complex
Gaussian process, which obeys the Markov property.

Appendix B: The Chapman-Kolmogorov test

To avoid checking the equality of Eq. (21) for all values of m, we rely on a first assumption that
the pixel correlation function JJJ(∆x) is monotonically decreasing, valid for all speckle correlation
functions experimentally tested. This common assumption is used in other ‘‘necessary condition"
Markov tests for large sets of data [19, 20, 25]. Checking Eq. (21) with m = 2,

P(An|An+1,An−1,An−2) = P(An|An+1,An−1), (32)

supports the intuitively obvious claim that testing conditional independence of immediately
neighboring pixels is more useful than testing significantly separated pixels. However, there
remains an unlikely possibility that Eq. (21) is satisfied for m = 2 but not for some m > 2.

For a random speckle field, we can further simplify the bilateral Markovity of Eq. (32) to the
unilateral Markovity of Eq. (5). The following argument shows that bilateral Gaussian Markovity
implies unilateral Gaussian Markovity. Consider the precision matrix Eq. (14) of an N-variate
first-order bilateral process (extension to gth order is direct). The only non-zero off-diagonal
entry in JJJ−1

e ’s last row is at (N,N−1), which by the conditional probability Eq. (10) indicates
the variable AN also satisfies the unilateral Markov property. One can check that the unilateral
Markov property holds for any Ap (1≤ p < N) as follows. Since the unilateral Markov property
of variable Ap does not concern any Aq with q > p, we only need to look at the joint distribution
of (A1, . . . ,Ap). Because the distribution is Gaussian, the p× p principal minor JJJp of JJJe is the
covariance matrix of (A1, . . . ,Ap). A direct computation shows the corresponding precision
matrix JJJ−1

p has the the same bandwidth as JJJ−1
e . The last row of JJJ−1

p also has one non-zero off
diagonal entry at (p, p−1). Thus, Ap also satisfies the unilateral Markov property for all p. In
general, the precision matrices JJJ−1 and JJJ−1

p have equal bandwidths under the assumption of a
spatially stationary random process. We stated this assumption in Section 2.

This simplification allows us to replace Eq. (32) with the unilateral condition

P(An|An−1,An−2) = P(An|An−1). (33)



While Eq. (33) is a useful necessary condition test, its estimation requires construction of a three-
dimensional conditional probability matrix, which scales poorly with a large state space. The
CK test in Eq. (22) is derived from Eq. (33) by multiplying either side by P(An−2)P(An−1|An−2)
and simplifying to

P(An,An−1,An−2) = P(An−2)P(An−1|An−2)P(An|An−1). (34)

Summing over An−1 and dividing by P(An−2) in Eq. (34) then leads to

P(An|An−2) = ∑
an−1

P(An−1|An−2)P(An|An−1). (35)

This relationship can be expressed in matrix form as the CK test Eq. (22). This equation is also
easily extended to validate the Markov property for higher-order lags (m > 2) by replacing An−2
with An−m and selecting any intermediate pixel to integrate over.

Finally, since the above derivations are only valid for a 1D Markov process, the 2D speckle
fields we capture in experiment are only tested along one dimension. Successfully applying a
1D Markov test to a 2D image follows from our assumption of an x-y separable autocorrelation
function. While a similar derivation may be used to create a complete unilateral test in 2D, the
result is a significantly more complex conditional probability relationship between 4 variables.

Appendix C: Speckle intensity and the Markov property

The derivation that Cauchy-masked speckle fields follow a Markov process does not directly
extend to speckle intensity. Intensity’s integration over phase changes Eq. (2)’s multivariate
complex Gaussian to a multivariate exponential density (e.g. see the derivation of speckle
intensity’s bivariate exponential density in Chapter 4 of [11]). While multivariate Gaussians are
conveniently described in full by their mean vector and covariance matrix (i.e., the covariance
matrix JJJ incorporates all conditional probability relationships), multivariate exponentials are
not. The general form of a multivariate exponential density function is [26]

p(I1, . . . , In) = exp
[
−

n

∑
1

ωi · Ii−∑
i< j

ωi j ·max(Ii, I j)

− ∑
i< j<k

ωi jk ·max(Ii, I j, Ik)−·· ·−ω12···n ·max(I1, I2, . . . , In)
]
, (36)

where each ω is a different correlation parameter. As with the speckle field, if n ≤ 2 then
Eq. (36) describes uncorrelated (n = 1) or nearly uncorrelated (n = 2) speckle intensity and
simplifies to fulfill the first-order Markov condition. For any n > 2, Eq. (36) relies on nth-order
correlation relationships that cannot be controlled optically. These nth-order correlations prevent
determination of Markov speckle intensity with average size extending over n pixels.

Instead, modeling speckle intensity as a hidden Markov process (HMP) offers a more direct
Markovity relationship. Underlying this HMP is a complex first-order Markov speckle field
generated using the proposed Cauchy mask. The |S| detectable complex field values form the
HMP’s discrete state space. The HMP’s observation space is the discrete set of |V | detectable
speckle intensity values. The |S| x |V | emission matrix contains the conditional probability of
observing intensity value Iv from any complex field value As and takes a very simple form: most
matrix entries will be zero except for those following the deterministic relationship Iv = |As|2.
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