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Abstract: We present an imaging procedure that simultaneously optimizes
a camera’s resolution and retrieves a sample’s phase over a sequence of
snapshots. The technique, termed overlapped Fourier coding (OFC), first
digitally pans a small aperture across a camera’s pupil plane with a spatial
light modulator. At each aperture location, a unique image is acquired. The
OFC algorithm then fuses these low-resolution images into a full-resolution
estimate of the complex optical field incident upon the detector. Simulta-
neously, the algorithm utilizes redundancies within the acquired dataset
to computationally estimate and remove unknown optical aberrations and
system misalignments via simulated annealing. The result is an imaging
system that can computationally overcome its optical imperfections to offer
enhanced resolution, at the expense of taking multiple snapshots over time.
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Aberrations (global); (110.7348) Wavefront encoding; (070.6120) Spatial light modulators.

References and links
1. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky and C. Ferreira, “Space-bandwidth product of optical

signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
2. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Optics 28, 4996–4998 (1989).
3. G. Zheng, R. Horstmeyer and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nature

Photon. 7, 739–745 (2013).
4. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Optics 21, 2758–2769 (1982).
5. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20, 40–56 (2003).
6. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: A novel phase

retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
7. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive

imaging,” Ultramicroscopy 109, 1256–1562 (2009).
8. C. J. Schwarz, Y. Kuznetsova and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424–

1426 (2003).
9. T. R. Hillman, T. Gutzler, S. A. Alexandrov and D. D. Sampson, “High-resolution, wide-field object reconstruc-

tion with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
10. S. Chowdhury and J. Izatt, “Structured illumination diffraction phase microscopy for broadband, subdiffraction

resolution, quantitative phase imaging,” Opt. Lett. 39, 1015–1018 (2014).
11. R. Gao, G. Pedrini and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,”

Opt. Lett. 38, 5204–5207 (2013).
12. D. J. Lee and A. M. Weiner, “Optical phase imaging using a synthetic aperture phase retrieval technique,” Opt.

Express 22, 9380–9394 (2014).
13. S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin and G. Zheng, “Aperture-scanning Fourier

ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22, 13586–13599
(2014).

#215109 - $15.00 USD Received 2 Jul 2014; revised 18 Sep 2014; accepted 19 Sep 2014; published 24 Sep 2014
(C) 2014 OSA 6 October 2014 | Vol. 22,  No. 20 | DOI:10.1364/OE.22.024062 | OPTICS EXPRESS  24062



14. B. Bhaduri, H. Pham, M. Mir and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37,
1094–1096 (2012).

15. L. Camacho, V. Mico, Z. Zalevsky and J. Garcia, “Quantitative phase microscopy using defocusing by means of
a spatial light modulator,” Opt. Express 18, 6755–6766 (2010).

16. M. P. Lee, G. M. Gibson, R. Bowman, S. Bernet, M. Ritsch-Marte, D. B. Phillips and M. J. Padgett, “A multi-
modal stereo microscope based on a spatial light modulator,” Opt. Express 21, 16541–16551 (2013).

17. F. Zhang and J. M. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82,
121104(R) (2010).

18. C. Liang, T. Lin, B. Wong, C. Liu and H. Chen, “Programmable aperture photography: multiplexed light field
acquisition,” ACM Trans. Graph. 27(3), 55 (2008).

19. K. Marwah, G. Wetzstein, Y. Bando and R. Raskar, “Compressive light field photography using overcomplete
dictionaries and optimized projections,” ACM Trans. Graph. 32(4), 46 (2013).

20. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto and M. G. L. Gustafsson, “Super-resolution video microscopy of
live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).

21. R. Fiolka, M. Beck and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy
using a spatial light modulator,” Opt. Lett. 33(14), 1629–1631 (2008).

22. S. Quirin, D. S. Peterka and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator
illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).

23. S. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Sig. Proc.
Mag. 23(3), 32–45 (2006).

24. M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth and M. Levoy, “Wave optics theory
and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).

25. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
26. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680

(1983).
27. A. M. Maiden, M. J. Humphry, M. C. Sarahan, B. Kraus and J. M. Rodenburg, “An annealing algorithm to correct

positioning errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).
28. A. Tripathi, I. McNulty and O. G. Shpyrko, “Ptychographic overlap constraint errors and the limits of their

numerical recovery using conjugate gradient descent methods,” Opt. Express 22, 1452–1466 (2013).
29. B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge and I. McNulty,

“Keyhole coherent diffractive imaging,” Nature Phys. 4, 394–398 (2008).
30. I. Johnson, K. Jefimovs, O. Bunk, C. David, M. Dierolf, J. Gray, D. Renker and F. Pfeiffer, “Coherent diffractive

imaging using phase front modifications,” Phys. Rev. Lett. 100, 155503 (2008).
31. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,”

J. Opt. Soc. Am. A 9(7), 10721085 (1992).
32. B. M. Hanser, M. G. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field

fluorescence microscopy,” J. Microsc. 216(1), 32–48 (2004).
33. G. Zheng, X. Ou, R. Horstmeyer and C. Yang, “Characterization of spatially varying aberrations for wide field-

of-view microscopy,” Opt. Express 21, 15131–15143 (2013).
34. V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” Appl. Opt.

33(34), 8121–8124 (1994).
35. A. W. Lohmann, “Matched filtering with self-luminous objects,” Appl. Opt. 7(3), 561–563 (1968).
36. O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti and F. Pfeiffer, “Influence of the overlap parameter on the

convergence of the ptychographical iterative engine,” Ultramicroscopy 108, 481–487 (2008).
37. M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von Koning, O. Bunk and F.

Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12, 035017
(2010).

38. X. Ou, G. Zheng and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt.
Express 22, 4960–4972 (2014).

39. R. Kingslake and R. B. Johnson, Lens Design Fundamentals: Second Edition (Elsevier and SPIE, 2010).
40. R. Horstmeyer and C. Yang, “A phase space model of Fourier ptychographic microscopy,” Opt. Express 22,

338–358 (2014).
41. P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494, 68–71

(2013).
42. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” In Proc. SIG-

GRAPH 97, ACM SIGGRAPH/Addison Wesley Computer Graphics Proceedings, Annual Conference Series,
369–378 (1997).

43. A. Lizana, N. Martin, M Estape, E. Fernandez, I. Moreno, A. Marquez, C. Iemmi, J. Campos and M. J. Yzuel,
“Influence of the incident angle in the performance of Liquid Crystal on Silicon displays”, Opt. Express 17(10),
8491–8505 (2009).

#215109 - $15.00 USD Received 2 Jul 2014; revised 18 Sep 2014; accepted 19 Sep 2014; published 24 Sep 2014
(C) 2014 OSA 6 October 2014 | Vol. 22,  No. 20 | DOI:10.1364/OE.22.024062 | OPTICS EXPRESS  24063



1. Introduction and background

Imaging lenses, ranging from microscope objectives to satellite-based cameras, are limited in
the total number of features they can resolve. This resolution limit is a function of both the
imaging system’s point-spread function (PSF) size and its inherent aberrations across the image
plane field of view (FOV). Typically referred to as an optical system’s space-bandwidth product
(SBP) [1], this physical resolution limit is uncoupled from the number of pixels at the detector
plane. While the SBP scales with the dimensions of the lens [2], it is often on the order of 10-
100 megapixels for most applications. For example, a typical microscope objective can offer a
sharp intensity PSF (0.5 µm) but only across a narrow FOV (1 mm), while a wide-angle lens can
offer a large FOV (10 mm) but at the expense of a blurry intensity PSF (5 µm). Both systems
can resolve a maximum of 107 features, which one may ideally sample with a 10 megapixel
digital detector.

Often, additional optical elements are used to correct for the aberrations that limit a cam-
era’s SBP. These extra elements simultaneously increase the size, weight and complexity of
the physical setup. In this paper, we explore an alternative approach to improving a camera’s
resolution performance. Instead of adding corrective optical components, we capture a series of
images and apply digital post-processing to measure and remove aberrations. This procedure,
termed overlapped Fourier coding (OFC), relaxes the complexity of the optics and digital de-
tector while ensuring a large optical system SBP (defined in [1]). Since maintaining this large
SBP now requires multiple image acquisitions, we effectively trade off lens complexity for ac-
quisition speed. Our correction scheme also acquires the phase of the optical field exiting the
sample plane, which may in turn be used to digitally refocus the sample post-capture to ensure
all image segments are in sharp focus.

OFC first acquires a sequence of images, modulating the camera’s Fourier plane with a shift-
ing aperture function between each snapshot. Here, the shifting aperture function we use is a
small square pupil generated on an amplitude-modulating spatial light modulator (SLM), al-
though other aperture function types, including phase-only modulation, may benefit alternative
applications. It is important the shifted sub-apertures spatially overlap with one another in the
pupil plane by a certain degree (here we use a 75% degree of overlap). Second, OFC uses a
unique algorithm to digitally synthesize the sub-aperture images into a high-resolution esti-
mate of the complex optical field at the image plane. This algorithm extends prior work using
multiple images captured under varied external illumination provided by an LED array placed
beneath a conventional microscope’s sample plane [3]. As such, it is directly related to the
well-known methods of phase-retrieval [4, 5] and ptychography [6, 7].

Unlike other holographic [8, 9] or non-holographic [3, 10–12] resolution-enhancing optical
setups that measure phase, this work does not use external illumination. So while OFC can-
not extend an optical system’s resolution beyond its aperture-defined cutoff, it can increase its
SBP via removal of undesired aberrations and misalignments. This sets our goal as distinct
from prior methods using aperture-based [13] and SLM amplitude modulation [14] to only ac-
quire phase, without correcting for system aberrations. Although not used by the current OFC
setup, phase-based modulation may also lead to accurate sample phase recovery [15–17]. Fur-
thermore, an SLM can help acquire an incoherent light field near a camera’s native spatial
resolution [18, 19]. Resolution-improved incoherent intensity images may also be obtained via
SLM-generated structured illumination [20–22]. Since incoherent setups do not measure phase,
their digital removal of system aberrations must follow an ill-posed intensity PSF deconvolu-
tion, previously attempted within both conventional fluorescent [22, 23] and light-field [24]
microscopy. By simultaneously measuring a complex sample field and estimating the camera’s
complex coherent transfer function, we avoid the common “divide-by-zero” challenges faced
when inverting an aberrated optical transfer function [25].
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Fig. 1. Outline of the OFC procedure. (a) We place a transmissive SLM in the Fourier
plane of a 4f system to digitally create different sub-aperture functions. (b) We capture a
sequence of aberrated images while the SLM displays a sub-aperture shifted to a unique
location between each snapshot. (c) We computationally transform the captured image set
into a high-resolution amplitude and phase map, as well as an estimation of the camera’s
low-order aberrations.

We recover an aberration-free complex sample function using simulated annealing, which it-
eratively reduces discrepancies between the image’s digital Fourier representation and the cam-
era system’s physical Fourier plane. Annealing is a well-studied optimization procedure [26]
that has been previously applied within the area of X-ray ptychography to correct for an optical
probe’s unknown shifted location [27, 28]. X-ray ptychography [6, 7] and coherent diffrac-
tive imaging [29, 30] setups have also measured and removed the effects of their illumination
probe. The proposed algorithm is closely related to this prior work, but instead searches over
either a set of unknown Zernike aberration parameters, or a space of Fourier plane misalign-
ments, or both, to increase a camera’s SBP over multiple acquisitions. While many previous
systems [31–33] can pre-calibrate for optical aberrations for later removal (assuming they also
quantitatively measure sample phase), OFC can continually update an improved estimate of
system imperfections from each captured image. This may prove beneficial in microscopy ap-
plications where objective lenses are often shifted or replaced, or in conventional cameras where
aberrations are a function of object depth and zoom lens position. In a broader sense, this sit-
uates the OFC scheme close to the realm of adaptive optics, which utilizes correction schemes
targeting and removing optical distortions that can change with each acquired image.

The remainder of this paper is outlined as follows. In Section 2, we present the OFC imaging
strategy and discuss its recovery algorithm in the context of an aberration-free setup. In Sec-
tion 3.1, we introduce the experimentally realistic situation of a camera containing low-order
optical aberrations that we model with Zernike circle polynomials [34]. We then demonstrate
how OFC uses simulated annealing to estimate and remove these aberrations from its final re-
construction. In Section 3.2, we show how the simulated annealing approach may additionally
account for aberrations that do not fall within the standard Zernike polynomial model, such



as distortion and lens misalignment. Finally, in Section 4 we experimentally demonstrate OFC
with an SLM-based shifting sub-aperture to recover a sample’s image and phase with resolu-
tion at the camera’s maximum cutoff spatial frequency. Our annealing algorithm likewise helps
remove included aberrations to increase the setup’s SBP.

2. Principle of operation

In this section, we first develop a mathematical model of OFC’s imaging routine. Then, we
detail how the OFC algorithm reconstructs a sample’s amplitude and phase at high-resolution
from a series of low-resolution measurements, assuming aberration-free optics.

2.1. Image acquisition

As diagrammed in Fig. 1, we implement overlapped Fourier coding in a conventional 4f imag-
ing system with a simple modification: a transmissive amplitude SLM inserted into the camera
Fourier plane (i.e., aperture plane). A 4f imaging system is not a requirement for effective op-
eration – placing the SLM at any plane conjugate to the sample plane (i.e., the aperture plane
of a compound lens system, or the back-focal plane of a microscope objective) offers similar
functionality. We will assume the sample s(x,y) at the object plane is illuminated with spatially
coherent and quasi-monochromatic light, as defined in [35]. OFC directly extends to operate
with partially coherent illumination. We also assume that our imaging setup contains pixels that
are matched to the maximum cutoff frequency of its unmodulated Fourier plane (i.e., each pixel
matches the system’s minimum PSF width). This enables us to effectively verify the accuracy
of our reconstruction through a direct comparison with an unmodulated image. A more prac-
tical OFC setup should match the pixel size to the NA of a single sub-aperture image, which
leads to a final reconstructed resolution surpassing the detector pixel count.

The square SLM of width L is configured to display a small square sub-aperture (i.e., opti-
cally transparent area) of width and height `. In this initial demonstration, we select a square
sub-aperture for its geometric simplicity and x-y separability, which helps minimize SLM pix-
elization artifacts. Alternative sub-aperture shapes like rectangles or circles may be easily incor-
porated into the following procedure. Our square sub-aperture is shifted to n2 different equally
spaced locations arranged on a 2D rectilinear grid. The jth sub-aperture will be displaced from
the origin by a two-dimensional vector cj = (cx j ,cy j) for 1 ≤ j < n2. By setting n > L/`, we
ensure that each sub-aperture overlaps partially with its neighboring sub-apertures. In practice,
it is useful to select n such that the sub-aperture images overlap by approximately 70−75% fol-
lowing a similar optimized parameter in ptychography [36]. All simulations and experiments in
this work use n = 9, requiring a total of n2 = 81 images per capture sequence. We set L/`= 2.5
to ensure each sub-aperture window overlaps with its neighbors by 75%.

An ideal binary amplitude SLM will completely block light when its pixels are switched to
opaque and pass 100% of any incident light when switched to transparent. In a practical setup,
a transmissive SLM will have a finite optical density b, which we include in our model by
defining the jth SLM sub-aperture’s transmission function Wj as,

Wj(kx− cx j ,ky− cy j) =

{
1, |kx| ≤ `

2 and
∣∣ky
∣∣≤ `

2
b, otherwise,

(1)

where (kx,ky) represent the aperture plane’s spatial coordinates (spatial frequencies neglecting
a constant scalar). Equation (1) states the SLM’s modulation is a biased rect function of width
` and center cj in the Fourier plane.

Modeling the optical field emerging from the sample surface as s(x,y), we can write the
complex field directly before the aperture (i.e., SLM) plane as F [s(x,y)] = Ŝ(kx,ky), where F
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Fig. 2. One stage of the basic OFC algorithm. For each window position W j, a segment of
the spectrum estimate Ŝ0(kx,ky) is extracted (corresponding to the jth position of the SLM’s
shifting sub-aperture). In the spatial domain, the amplitude associated with this windowed
spectrum is constrained with the measured image I j(x,y) to form p′(x,y). Example detected
images are in (d), where we measure the simulation’s spatial frequency “cutoff” at Group
0, Element 4. The result is Fourier transformed back to the aperture plane, where it is used
to update the spectrum estimate, Ŝ0(kx,ky).

is the Fourier transform operation and we will refer to Ŝ as the sample’s spectrum. After passing
through the jth sub-aperture window, Wj, the exiting field is the product Ŝ(kx,ky)Wj(kx,ky)
assuming the SLM is thin. This modulated field then propagates to the image plane detector,
where to a first-order approximation the jth image measures,

I j(x,y) = |F [Wj(kx,ky)Ŝ(kx,ky))]|2, (2)

for 1 ≤ j ≤ n2. The first goal of OFC post-processing is to recover a high-resolution complex
estimate of the sample S from the above set of n2 intensity measurements.

2.2. Aberration-free OFC reconstruction

The basic OFC post-processing algorithm employs the well-known strategy of alternating pro-
jections, a common phase retrieval method [4,5]. Our measured images constrain our sample es-
timate to a known set of amplitudes in the spatial domain, while our shifting SLM sub-aperture
uniquely constrains its support in the Fourier domain. Assuming an aberration-free setup, the
OFC algorithm reconstructs a complex field exiting the sample plane at the employed imag-
ing system’s maximum resolution. Unlike in the related Fourier ptychographic microscope [3],
the sample here may be thick, optically reflective, and under arbitrary quasi-coherent illumi-
nation. While the aperture scanning procedure in [13] also follows similar steps, OFC’s SLM
modulator requires certain algorithm modifications that we outline below.

The following explains one iteration of the OFC process. To begin, we initialize an estimate
of the unknown high-resolution complex sample spectrum, Ŝ0(kx,ky), as shown in Fig. 2(a).
A good starting point is an up-sampled version of the low-resolution image recorded with
a centered sub-aperture, multiplied with a randomly assigned phase. Then, the iteration first
computes a masked spectrum estimate by modulating Ŝ0 with one of our SLM sub-apertures
from Eq. (1). Starting with j = 0 and continuing until j = n2 − 1, we compute the spec-
trum product P̂j(kx,ky) = Ŝ0(kx,ky)Wj(kx,ky). For an SLM with perfect contrast, this corre-
sponds to selecting a windowed region of Ŝ0, as shown in Fig. 2(b). Second, we compute the
Fourier transform of this spectrum product to simulate light’s propagation to the image plane:
p j(x,y) =F [Pj((kx,ky)]. Third, we replace the amplitude of the resulting Fourier transform p j



with the known amplitude from the jth detected image
√

I j to form p′j:

p′j(x,y) =
√

I j(x,y)
p j(x,y)
|p j(x,y)|

. (3)

Like other phase retrieval strategies, this leaves the estimated field’s phase unchanged. Fourth,
we inverse-Fourier transform p′j to create a new spectrum: P̂′j(kx,ky) = F−1

[
p′j(x,y)

]
.

Fifth, we update our sample spectrum estimate with P̂′j. While we accounted for the SLM’s
imperfect modulation when extracting P̂j from Ŝ0, we do not use the same support function
when re-inserting P̂′j in this update. Instead, we only update the aperture area that in an ideal
case is optically transparent, leaving all other areas unchanged:

Ŝ0(kx− c jx ,ky− c jy) =

{
P̂′j(kx− c jx ,ky− c jy), |kx| ≤ `

2 and
∣∣ky
∣∣≤ `

2
Ŝ0(kx− c jx ,ky− c jy), otherwise.

(4)

This selective support constraint is unique to OFC. However, it shares close parallels with
the methods of hybrid input-output [4] and iterated projections [5] that do not strictly enforce
an optical system’s support constraint every iteration. While alternative update strategies are
certainly possible, we empirically determined that Eq. (4) leads to quick and accurate algorithm
convergence. After updating all n2 overlapping sub-aperture areas of Ŝ0, we proceed to a second
iteration by advancing our spectrum estimate: Ŝ1← Ŝ0 and resetting j = 0. After q iterations, we
inverse Fourier transform the final recovered spectrum Ŝq(kx,ky) to recover our high-resolution
sample estimate, sq(x,y).

2.3. Aberration-free OFC simulation

Figure 3 demonstrates the OFC algorithm’s successful convergence to an accurate amplitude
and phase measurement in simulation. With an ideal camera (no aberrations or misalignments,
but including Gaussian noise), Section 2.2’s five update steps recover a sample estimate at the
system’s full (i.e., unmodulated) resolution. Our ideal simulated 4f camera has a maximum F-
number of 7.5 (PSF width= 5µm width at the detector assuming λ = 632 nm illumination),
and its detector pixels are 5 µm to match this unmodulated PSF. We shift a square sub-aperture
that is ` = 4 mm wide across a total distance of L = 10 mm, where each shift is ∆c = 1 mm
along one dimension. In two dimensions, this leads to a total of 81 images and an aperture
overlap percentage of 75%. Simulated intensity images are N = 10002 pixels and have a 12-bit
well depth. These setup parameters closely match our experimental setup (see Section 5) and
are used for all subsequent simulations.

In Fig. 3(a), we first reconstruct an Air Force resolution target sample U(x,y) with a
2.5 µm minimum feature size (i.e., half a pixel) with a multiplied cubic phase function:
6 U(x,y) = α(x3 + y3), where 6 indicates phase and α = 20π . We add 2% random Gaussian
noise to each sub-image’s intensities after detection to simulate detector-induced noise. For the
sub-image captured with its sub-aperture centered on the optical axis, the minimum resolv-
able element in the Air Force target is Group 0, Element 4 (using Sparrow’s condition, boxed
in Fig. 2(d)). After OFC reconstruction, the intensity’s minimum resolvable element shrinks
to Group 1, Element 5 (boxed in Fig. 3(a)), showing an increase in the maximum resolvable
spatial frequency by a factor of 2.5. This closely approaches an ideal factor of 3 system reso-
lution gain, as the final synthesized aperture is 3 times wider than a single sub-aperture. The
reconstructed phase resembles the target’s original phase, but contains significant artifacts in
areas that lack significant phase variation (i.e., towards the image center). As noted in prior
work, the ptychography update process has trouble accurately reconstructing such areas of low
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Fig. 3. OFC simulations for an aberration-free noisy imaging system. (a) Air force reso-
lution “target” amplitude and phase (top) and the corresponding OFC reconstruction (bot-
tom), including 2% noise. Note this simulated sample’s slowly-varying phase is poorly
reconstructed. We box the reconstruction’s spatial frequency cutoff (Group 1, Element 5).
(b) A blood smear “target” sample’s phase is reconstructed with much higher (10X) fi-
delity than in (a), again including 2% noise. For both simulated samples, reconstruction
error grows linearly with system noise while the OFC algorithm continues to converge.

amplitude and phase variation [37]. This may be especially problematic when rectangular grid
scanning is used. However, such a “challenging” sample will offer a useful target to benchmark
our simulated annealing technique’s performance in Section 3.

We verify this phenomena with a second OFC simulation of a different target sample con-
taining highly varying phase (a previously measured amplitude and phase map of a monolayer
of blood cells, Fig. 3(b)). Here, even in the presence of 2% detector noise, we observe near-
perfect phase reconstruction. The normalized mean-squared error (NMSE) Eq between the tar-
get sample U(x,y)’s and reconstruction sq(x,y)’s amplitudes offers a useful metric to examine
algorithm performance, as also used in [4]:

Eq =
√

∑
x

∑
y
(|sq(x,y)|− |U(x,y)|)2/N, (5)

where N is the total number of image pixels and q indicates iteration number. Figure 3 includes
plots of the NMSE as a function of 15 iterations, where one iteration updates all 9 x 9 over-
lapping sub-aperture regions. Each curve represents a different amount of zero-mean Gaussian
noise (variance σ2 = 0, 0.5%, and 2% of the maximum signal value). As expected, the al-
gorithm is error-reducing and convergence accuracy decreases with increased noise for both
samples. In addition, the blood cell sample’s highly varying phase leads to approximately 10
times lower NMSE than the slowly-varying cubic phase sample. Alternative aperture coding
strategies may help reduce this performance gap [37], including addition of a random offset to
the center of each sub-aperture to break scan pattern symmetry. But as with most phase-retrieval
based solvers, we expect OFC’s convergence to remain sample dependent.
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Fig. 4. Schematic of the OFC algorithm with simulated annealing (SA-OFC). We use the
same phase retrieval loop outlined in Fig. 2 with three additions. First, an estimate of the
system’s aberrations at the Fourier plane A j is now multiplied with the spectrum estimate
Ŝ at each loop. Second, SA is used to compare T different perturbed versions of the jth

windowed spectrum with the jth intensity measurement. Third, the error-minimizing aber-
ration perturbation Atmin

j and corresponding sample estimate ψ
tmin
j are identified with Eq. (9),

which then update A j+1 and Ŝ j+1 via Eq. (10)–Eq. (11).

3. OFC with simulated annealing

By imaging with an overlapping sub-aperture set, OFC captures slightly redundant data. This
redundancy not only allows us to accurately extract sample phase, but also helps us compute
a low number of unknown variables that influence the imaging process. A well-known method
of searching over a space of unknown variables to maximize or minimize a particular function
of merit (i.e., error function) is simulated annealing (SA). Instead of exhaustively searching
through all possible unknown variable configurations, SA takes an iterative approach. At one
iteration, annealing first randomly searches through a small number of different configurations
and selects the configuration that minimizes its error function. Then, it uses this configuration as
starting point for the next search. As iteration continues, the algorithm slowly reduces the range
over which it randomly searches for error-minimizing states. For many problems, this type of
iterative local search is very efficient at seeking out global minima of nonlinear functions [26].

OFC’s space of unknown variables includes any optical system aberrations or misalignments.
At each sub-aperture location, our function to minimize is the mean-squared error difference
between the recorded intensity image, I j(x,y), and the corresponding image that would re-
sult from detecting our complex windowed spectrum estimate, P̂(kx,ky). For each iteration, we
make several guesses about how the optical system might be aberrated or misaligned, compute
the resulting image captured through each imperfect camera, and then select the imperfections
that yield the closest image to our observed data as the starting point for the next iteration. As
we will demonstrate, this process is both effective at recovering the correct imperfections and
robustly removing these imperfections from a final sample solution. However, we must assume
a-priori knowledge about which subspace of imperfections to search through, as search time
will scale linearly with the dimensions of this search space.

3.1. Characterization and removal of low-order aberrations

We may account for our 4f setup’s wavefront-based aberrations using a multiplicative phase
function, A(kx,ky), at its Fourier plane. It is common to decompose A into a sum of weighted
Zernike polynomials on the unit disk: A(ρ,θ) = exp(2πi∑l alWl(ρ,θ)), where Wl are the or-



thogonal Zernike polynomials and al are the associated weights [34]. In this section, we will
consider the most significant Zernike polynomial used to describe an optical aberration, defo-
cus. A Zernike polynomial decomposition’s defocus term takes the Cartesian coordinate form,

A(kx,ky) = e(id(k
2
x+k2

y )), (6)

where again (kx,ky) are the imaging system’s Fourier plane coordinates and d is a defocus
aberration weight. Selecting Eq. (6) as our aberration model calls upon prior knowledge that
this simple example system is primarily susceptible to defocus. In the following section, we
discuss how to correct for an aberration function composed of multiple higher-order Zernike
polynomials.

In addition to an estimated spectrum Ŝ0, simulated annealing OFC (SA-OFC) also initializes
an estimated aberration map A0 (Fig. 4). We always initialize with A0(kx,ky) = 1. SA-OFC then
begins with j = 1 and computes T different candidate aberration functions at the jth loop:

At
j(kx,ky) = A j(kx,ky)e(i∆t (k2

x+k2
y )), (7)

for 1≤ t ≤ T . Here, ∆t is a number selected randomly from a uniform distribution on (−ra,ra),
where ra is the annealing search radius. Each candidate At

j can be thought of as a random
perturbation of the current iteration’s estimated aberration function restricted to a limited search
distance ra. Next, we compute T candidate aberrated spectra, Ψ̂t

j = Ŝ jAt
j. We then window

these spectra with sub-aperture function Wj and Fourier transform the result to form a set of T
uniquely aberrated low-resolution image fields:

ψ
t
j(x,y) = F [Wj(kx,ky)Ψ̂

t
j(kx,ky)], (8)

The annealing ends with identification of the candidate aberration perturbation Atmin
j (kx,ky) that

minimizes the MSE between the set of candidate images ψ t
j(x,y) and our measured image

through the jth sub-aperture, I j(x,y):

tmin = argmin
t

(
∑
x

∑
y

(
|ψ t

j(x,y)|−
√

I j(x,y)
)2
)
. (9)

Since we only measure intensity, Eq. (9)’s merit function only considers each ψ t
j’s amplitude.

We use the error-minimizing aberration perturbation Atmin
j as our annealing search’s starting

point for the next ( j+1)th sub-aperture image:

A j+1(kx,ky) = Atmin
j (kx,ky) (10)

We also re-insert Atmin
j into Eq. (8) to find ψ

tmin
j , our optimal aberrated image field estimate. We

then constrain ψ
tmin
j with our measured intensities following Eq. (3): ψ

′
j =

√
I jψ

tmin
j /|ψ tmin

j |.
After Fourier transforming ψ

′
j into Ψ

′
j, we are then ready to update our unaberrated sample

spectrum estimate, Ŝ j. To remove the effects of aberrations, we adopt a strategy common to
prior algorithms like ePIE [7] and EPRY [38] and effectively divide out the aberration function
estimate A j from Ψ

′
j:

Ŝ j+1(0) = Ŝ j(0)+
A∗j
|A j|

(Ψ̂
′
j− Ψ̂ j). (11)

Eq. (11)’s modified notation includes the iteration number in parenthesis and indicates update
by the jth sub-image with a subscript. This random search and update process is repeated for
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Fig. 5. Simulation results of the SA-OFC algorithm. (a) Without simulated annealing, OFC
cannot combine a set of aberrated sub-images into an accurate full-resolution complex
field estimate. The induced defocus aberration is show to right. (b) The annealing OFC
algorithm accurately recovers both the sample’s amplitude and phase and the 4f setup’s
aberration map Aq(kx,ky). Here, q = 20. (c)-(d) Example low-resolution sub-aperture im-
ages, for comparison.

all 0 ≤ j ≤ n2− 1 sub-apertures to complete one iteration. To encourage the SA-OFC algo-
rithm’s convergence, we linearly reduce the search radius ra after each iteration: ra← ra−αa,
where typically αa ≈ ra/q. Iteration continues for q loops to jointly solve for our final camera
aberration map A(q) and sample spectrum solution Ŝ(q).

While Eq. (11) resembles the sample update strategy of earlier ptychography algorithms
in [7, 38], SA-OFC must depart from this prior work to overcome a key challenge. All pre-
vious ptychographic setups (including Fourier ptychography) acquire a series of images that
are similarly altered by the same aberrated probe beam/microscope aperture. Such redundancy
enables direct extension of alternating projections methods to jointly solve for the sample and
probe/aperture function. In OFC, however, each sub-image is altered by a different windowed
area of the aberrated camera aperture. The useful redundancy helping the extended alternating
projection algorithms in [7,38] converge to an accurate joint solution is no longer present. OFC
must instead iteratively update the global aberration function A(kx,ky) in Eq. (10) with par-
tial information from each sub-image through annealing. We now demonstrate this alternative
strategy also converges to an accurate aberration measurement.

Figure 5 presents an example simulation of the SA-OFC algorithm using the same 4f setup
from Section 2. The target sample matches Fig. 3(a)’s, but now with α = 5 defining its cu-
bic phase envelope. We add defocus aberration by multiplying A(kx,ky) in Eq. (6) with each
simulated sub-aperture spectrum, setting d = 200. To first test the effect of aberrations with-
out simulated annealing, we run Section 2’s basic OFC algorithm to recover the amplitude and
phase maps shown in Fig. 5(a). Because the algorithm incorrectly updates our sample estimate
with aberrated low-resolution intensity images, the final solution does not closely resemble the
target sample. Switching to Section 3.1’s SA-OFC algorithm enables simultaneous aberration
map estimation and removal, as shown in Fig. 5(b). For this example, we use the same initial
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Fig. 6. (a) SA-OFC is error reducing (blue) and exhibits much lower error than the regular
OFC algorithm (red) in the presence of aberrations (assuming defocus d = 200). The ideal
case of performing SA-OFC with an a-priori known aberration initialized and enforced
each iteration is plotted in green. (b) As the aberration size increases, SA-OFC, OFC and
the ideal case all slowly decrease in MSE performance. SA-OFC exhibits an aberration
recovery mean-square error ∆d scaling roughly as 10-15% of d, which may be improved
with additional fine-tuning of annealing parameters.

conditions and noise in Section 2, setting T = 8, q = 20, and ra = d/2. The recovered aber-
ration map Aq’s defocus coefficient dq differs from ground truth by ∆d = (dq− d)2 = 25.71.
Likewise, we now measure the Sparrow limit frequency cutoff as Group 1 Element 3, which
is 80% the ideal cutoff due to residual defocus error. Annealing generally performs better with
more candidate search functions T , but will require linearly more computation [27]. It is also
sensitive to the selected search radius ra. All simulations here use ra = d/2 and linearly de-
crease it to zero by the qth iteration with αa = ra/(q+1). It may prove useful to optimize over
these free parameters, and also randomly offset each sub-aperture center to minimize artifacts
in the sample’s reconstructed phase.

We plot the SA-OFC algorithm’s NMSE from Eq. (5) versus iteration q in Fig. 6(a). Here,
we compare simulated annealing (blue curve) with two alternative post-processing options. We
use the same parameters as in Fig. 5 but now average over 5 runs with σ2 = 2% noise. First, no
annealing (“no SA”, red) leads to a significantly higher sample recovery error (see Fig. 5(a)) but
maintains error-decreasing performance, demonstrating algorithm stability. Second, we assume
a-priori knowledge of the 4f setup’s aberration map A0(kx,ky) (“known”, green) to recover an
almost exact solution. Here, instead of using Eq. (10) to estimate the aberration function each
iteration, we simply set A j+1(kx,ky) = A0(kx,ky), the actual aberration map in Eq. (6), for all j.
The SA-OFC algorithm closely approaches this exact removal process (within 5% after 20 iter-
ations). Thus, while computational limitations prevent exact recovery, OFC’s captured dataset
certainly contains enough redundancy to significantly improve an image’s SBP via defocus
aberration removal.

We once again repeat Fig. 5’s simulation in Fig. 6(b), but now vary the amount of defocus
aberration d in the ground-truth aberration A(kx,ky). Again, each plot point is an average over
5 independent runs with σ2 = 2% noise. As expected, SA-OFC remains bounded below by the
case of knowing and directly accounting for a complex aberration map. However, it achieves
much lower error than an annealing-free algorithm, even for significantly defocused image sets.

3.2. Characterization and removal of geometric distortion

A number of camera imperfections that negatively impact image fidelity cannot be summa-
rized as a Fourier plane phase-only modification (i.e., with the Zernike polynomial aberration
model). Examples of such imperfections include unknown changes in magnification, image
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Fig. 7. SA-OFC removes geometric distortions. (a) SLM sub-aperture centers at the Fourier
plane (blue dots) may be distorted by optical misalignments to unknown positions. During
algorithm iteration, each estimated center is randomly perturbed by vector (δx,δy) as we
generate and compare trial images to measured data. (b) Ground-truth sub-aperture centers
for Fig. 5’s simulation are here radially offset to simulate a Fourier plane displaced by 100
µm axially. The actual center of each displaced sub-aperture is marked with an ‘x’. Ini-
tializing each sub-aperture center on an assumed rectilinear grid (blue dots), the simulated
annealing process draws these estimates close to the actual centers after 10 iterations. (c)
Error decreases with iteration similar to Fig. 6(a).

distortion, and vignetting caused by system misalignment. In this section, we explore how to
correct for one specific form of misalignment that significantly impacts our experiments: the
displacement of the Fourier plane from its assumed location, which is directly connected to
image distortion. We outline how the SA-OFC algorithm accounts for this type of unknown
parameter by updating the estimated size and location of each SLM sub-aperture, leading to an
improved-resolution complex sample reconstruction.

It is challenging to construct an imaging system with a perfectly flat, centered Fourier con-
jugate plane (i.e., aperture plane or back focal plane). Slight curvature across the plane is often
encountered, even with the aid of advanced lens design software [39]. Element misalignment
during system assembly will additionally shift the Fourier plane away from its ideal location.
Misalignments may point perpendicular to the optical axis, which will cause the Fourier plane
to laterally shift and add a linear phase ramp across the image plane. Or, they may point axially,
which will primarily cause the Fourier plane to scale in magnification. Depending upon the size
and linearity of this scaling, the field at the image plane can become magnified, geometrically
distorted and also defocused.

The SA-OFC algorithm can help measure and remove this type of misalignment. First, let’s
assume that the location of each SLM pixel is known a-priori and we can accurately measure
the optical field associated with one sub-aperture image, I j(x,y). This field’s digital inverse
Fourier transform should create a masked spectrum with a clearly visible window function,
Wj(kx,ky), modulating the sample spectrum via Eq. (2). Any deviation in the position and size
of the computed window Wj(kx,ky) from the known SLM pixel map will inform us of how
the optical setup’s Fourier transformation differs from an exact digital computation. We may
computationally account for any such deviation (i.e., system misalignment) by digitally updat-
ing the window’s assumed position and size with a more accurate reflection of the imperfect
optical setup.

In practice, although we assume accurate knowledge of each sub-aperture’s centered location(
cx j ,cy j

)
and size ` j when we extract and insert the updated spectra (e.g., Eq. (4)), these vari-



ables are not known a-priori. Moreover, each sub-aperture image only measures the complex
field’s amplitude, thus preventing us from adopting the above simple misalignment correction
scheme. However, just like last section’s unknown aberration function A(kx,ky), we can deter-
mine the 3 ·n representative variables c jx , c jy and ` j from measurements of the field’s intensity
with simulated annealing. Our “geometric distortion” annealing process proceeds as follows.
At the jth iteration, we construct T candidate window functions W t

j , defined for 1≤ t ≤ T as,

W t
j (kx− c jx −δ

t
x,ky− c jy −δ

t
y) =

{
1, |kx| ≤ δ t

a`
2 and

∣∣ky
∣∣≤ δ t

a`
2

b, otherwise,
(12)

Here, (δ t
x,δ

t
y) are random perturbations selected from the uniform distribution [−rx,rx] that

modify each window function’s center, and δ t
a is a random perturbation from the uniform dis-

tribution [−rw,rw] that randomly scales the aperture size. Just like ra, rx and rw are annealing
search radii that we reduce by an α factor each iteration, again using αx = rx/(q+ 1) and
αw = rw/(q+1) in all demonstrations. Next, we create T different windowed spectra, each of
which we Fourier transform into a simulated image:

ψ
t
j(x,y) = F [W t

j (kx,ky)Ŝ j(kx,ky)], (13)

As with the aberration annealing process, we compare each simulated image ψ t
j with the jth

measured image I j to find the error-minimizing perturbed window function, following Eq. (9).
We save a map of all updated centers, which serve as the starting window positions and sizes
during the next cycle through all n windowed images (i.e., as the algorithm proceeds from the
1st to qth iteration).

Figure 7 presents a simulation of the geometric distortion SA-OFC process. Here, we again
use our familiar noisy optical system, now free of Zernike model aberrations but geometrically
distorted in a radial manner. Each sub-aperture center is displaced from its original location by
δcj = 0.05cj, suggesting a Fourier plane that is axially offset from its true location by 250 µm.
Figure 7(b) illustrates this distortion, where the blue circles denote the distortion-free rectilinear
centers cj (i.e., the algorithm’s assumed centers) and the x’s mark their actual locations, cj+δcj.

Iterating q = 20 times accurately identifies the unknown misaligned sub-aperture centers.
Using parameters T = 8, rx = 10 pixels and rw = 0 pixels, we reduce an initial average center
offset from 125 µm to 14 µm. Removal of these geometric effects qualitatively improves the fi-
nal image similar to Fig. 5. As with using SA to correct for misalignments in ptychography [27],
we also empirically find that holding (δ t

x,δ
t
Y ) to zero for the first few iterations helps improve

convergence. Figure 7’s simulation holds the search radius to 0 for the first 5 iterations, as SA’s
blue error curve in Fig. 7(c) indicates. As with our aberration correction example in Fig. 6, this
curve’s final error is much lower than OFC without simulated annealing (red) and is bounded
below by running OFC with the correct geometric distortions known a-priori (green).

3.3. The complete OFC algorithm

We may also simultaneously determine and remove low-order Zernike polynomial-based aber-
rations and geometric misalignments in one SA loop. By searching over both candidate aberra-
tions with Eq. (7) and sub-aperture positions with Eq. (12) in a parallel manner, we may use the
SA process summarized in Eq. (7) – (11) to search over a larger sub-space of unknown camera
configurations. However, as we increase the dimension of this parameter search space, com-
putation time will grow exponentially. For example, to search over both T different possible
defocus settings and T different sub-aperture positions with the same amount of coverage, each
loop must now test T 2 candidate states. If we would also like to search for the effects of x and y
astigmatism, the number of candidate tests jumps to T 4. For a p-dimensional parameter search
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Fig. 8. Experimental results from an OFC setup. We first image an Air Force resolution
target to test the algorithm’s spatial resolution performance. (a) A single sub-aperture image
exhibits low spatial resolution. (b) The OFC algorithm without annealing recovers a sharper
image, but still contains artifacts. (c) The SA-OFC algorithm further improves the output
field sq(x,y)’s spatial resolution (see text for algorithm parameters), as highlighted by traces
in (d).

space, the number of candidate tests becomes T p. As our constructed optical setup was primar-
ily influenced by sub-aperture position shift and low-order aberrations, this exponential scaling
does not become a major concern, as the following experiment demonstrates. However, for sys-
tems suffering from many possible equally-weighted aberrations and geometric imperfections,
alternative iterative strategies like conjugate gradient descent [28] will prove more efficient.

4. Experimental results

Our experimental OFC setup closely matches the optical conditions simulated above. We cre-
ated a 4f camera using two bi-convex lenses (diameter= 25.4 mm, f= 75 mm, Thorlabs AC254-
075). Without any additional corrective elements, it is easy to confirm that such a single-element
large F-number lens (∼F/3) exhibits significant off-axis aberrations. We use an amplitude-
modulating SLM (Epson HDTV LCD, BBS Bildsysteme 1920×1080 pixels placed between
two crossed polarizers) to create the Fourier plane’s shifting sub-aperture masks. Used as an
amplitude modulator, imperfections in the SLM’s surface flatness or angle-dependent response
do not significantly alter detected intensities. One may also add parameters to the SA search
process to estimate and correct for such unknown imperfections, albeit at the expense of in-
creased computation time. Furthermore, the SLM’s imperfect pixel fill factor generates multiple
diffractive orders. Due to our interest in just the amplitude-modulated zeroth order, we allow
all higher orders to exit the optical system.

At the image plane, we place a CMOS detector (Prosilica GX-1920 with 4.54 µm pixels).
We vary the central 1202 pixels of the SLM, defining the camera’s full aperture width as 2.76
mm with its 23 µm pixels. This finite aperture range turned out to be an optimal compromise
between resolution-matching with our detector pixel size and efficiently computing an SA-
OFC reconstruction. In the presence of large aberrations, such as those created by large-angle
rays from our single-element lenses, SA must search over a proportionally increased parameter
range, which slowly becomes intractable in a high-dimensional parameter search space.
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Fig. 9. (a) Aberration map recovered simultaneously with Fig. 8(c)’s image. (b) Geometric
misalignments of our 4f setup’s Fourier plane also simultaneously recovered by the SA-
OFC algorithm. Average shifts for each row/column are plotted on the side/top. (c) Plot
demonstrating the algorithm’s error reduction with iteration. After 10 iterations, SA-OFC’s
NMSE is 3 times lower than the direct OFC algorithm without annealing.

We illuminate our sample with a collimated 632 nm laser beam (no spatial filtering used).
Unlike Fourier ptychographic microscopy [3], the illumination field’s specific shape and phase
is not critical and can remain unknown. The spatial coherence length of the illuminating beam
must be as wide as the sample at the object plane (approximately 5 mm here). Likewise, the
source’s temporal coherence must follow the quasi-monochromatic condition in [35], although
a spectral bandwidth full width half maximum of approximately 10 nm has been observed as
sufficiently narrow [13,40]. Both conditions may be achieved with an LED placed sufficient far
behind the sample. Alternative algorithms exist to incorporate the effects of a partially coherent
source and further reduce these illumination requirements [41].

The SLM’s displayed sub-aperture is a square with side length ` = 0.92 mm, which we
sequentially shift laterally n = 9 times in x and y across an L×L =2.76 mm× 2.76 mm square
Fourier plane area. In each step, we shift the aperture by 0.28 mm, raster scanning it until it
passes through all n2 = 81 unique aperture locations. This leads to a sub-aperture overlap of
approximately 70% and an expected resolution gain of 3. To ensure that each of the 81 captured
images is properly exposed, we take 3 snapshots at each sub-aperture position with an exposure
sequence of .01, .1 and 1 second and combine these 3 images via high-dynamic range (HDR)
processing [42]. The HDR process may be omitted by using a high bit-depth detector or if
larger sub-apertures are utilized. Finally, we experimentally measure the SLM’s optical density
as 22 (i.e., the central sub-aperture region is 22 times as bright as the outer apodizing region),
making b = 0.045 in Eq. (1).

Figure 8(a) displays an example sub-aperture image captured with the aperture centered on
the optical axis (i.e., cj = 0). First, we attempt OFC reconstruction without simulated annealing
as outlined in Section 2. The reconstructed image intensity after q= 20 iterations is in Fig. 8(b).
Note the resolution is improved significantly above a single sub-aperture image, but artifacts
remain primarily due to a misaligned Fourier plane. To correct these misalignments, we then
implement OFC with simulated annealing. We use Section 3.3’s “complete” SA-OFC algo-
rithm to jointly search over aberrations and geometric misalignments. We adopt an aberration
model that contains the first five primary aberrations beyond linear tilt in x and y – defocus, x/y
astigmatism and x/y coma: A(ρ,θ) = exp

(
2πi∑

8
l=4 alWl(ρ,θ)

)
. Applying Eq. (7)’s search but

now over these 5 orthogonal aberration modes, in addition to Eq. (12)’s geometric sub-aperture
correction, creates a total search space dimension of p = 6 (T 6 candidate tests).
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Fig. 10. SA-OFC for quantitative phase. (a) Recovered phase map of 5 microspheres with
aberration correction. (b) Line trace through one sphere demonstrates quantitative accu-
racy. (c) Example captured images. (d) Simultaneously recovered aberration map exhibits
a similar structure as Fig. 9(a), as expected for the same optical setup. (e) Phase map re-
covered by the OFC algorithm without simulated annealing, where low-order aberrations
clearly impact the fidelity of the reconstructed phase map.

Setting the SA-OFC algorithm parameters to q = 20 iterations, T = 2, ra = 10, rx = 8, rw = 1
and with linearly reducing α’s, we obtain Fig. 8(c)’s intensity image. Figure 8(d) plots a line
trace through each image’s group 4, element 6. Both the sub-aperture image (a) and uncor-
rected output (b) fail to resolve this feature (17.54 µm-width). The aberration-corrected image
(expected spatial frequency cutoff at 17.2 µm−1) does resolve this group, confirming SA-OFC’s
ability to restore a potentially misaligned camera system close to its native resolution.

The experimental system’s aberration map Aq(kx,ky) and Fourier plane misalignments, si-
multaneously recovered with the image in Fig. 8(c), are shown in Fig. 9(a) and Fig. 9(b), re-
spectively. We note the final aberration function’s modal weights decrease with mode number,
as expected for most lens systems. Linear x and y-tilt aberrations are partially corrected for by
the geometric Fourier plane realignments and are thus left out of Aq(kx,ky) for computational
efficiency. Figure 9(b) shows that geometric realignments are primarily a linear function along
the vertical direction, as highlighted by its plots of average shift along kx and ky (average δcx
and δcy). This matches observable changes in reconstructed vertical image features without
(Fig. 8(b)) and with (Fig. 8(c)) SA. Without SA, the large unknown vertical misalignments
cause the OFC algorithm to inaccurately combine each sub-images vertical spatial frequencies
into a vertically blurred reconstruction. SA correctly identifies and accounts for this these large
misalignments. Finally, we plot the algorithm’s NMSE Eq in Fig. 9(c), calculated via Eq. (5).
We also plot Eq after halving the geometric misalignment search radius to rx = 4, offering an
idea of the algorithm’s sensitivity to this type of free parameter. The addition of annealing (SA-
OFC) improves our reconstruction NMSE by a factor of 3-4, but falls short of perfect recovery.
Future efforts can increase reconstruction quality by including higher-order aberration and mis-



alignment terms in the SA-OFC model, which will also increase computational complexity.
Next, to demonstrate that the OFC procedure can also acquire quantitative phase, we image a

monolayer of polystyrene microspheres (diameter = 117 µm, index nsphere = 1.594 at λ = 632
nm) coated on a microscope slide and immersed in oil (index noil = 1.5915). We use the same
SA-OFC algorithm parameters outlined above to converge upon a high-resolution complex
sample reconstruction. A phase map containing five microspheres is in Fig. 10(a). We take a line
trace through one microsphere’s phase (dashed line) and plot its optical thickness h computed
from the measured phase map ∆φ(x) via the following equation: h = λ

2π
∆φ(nsphere− noil)

−1.
This blue curve in Fig. 10(b) closely matches the optical thickness of a perfect sphere of known
microsphere diameter, which here in green equals the length of the vertical chord connecting
the top and bottom arcs of a 117 µm diameter circle. Minor background phase variations re-
main (∼0.2 radian peak change), which can be minimized with additional parameter tuning
or a modified aperture coding strategy. Figure 10(d) includes the microsphere image’s com-
puted aberration map, indicating successful convergence following two observations. First, the
aberration map exhibits a similar structure to the resolution target’s shown in Fig. 9(a), apart
from a constant phase offset. Second, microspheres recovered without aberration correction in
Fig. 9(e) do not closely match the expected thickness profile, thus pointing towards the ne-
cessity of an aberration and misalignment correction strategy to ensure ptychography-based
recovery schemes like OFC remain quantitatively accurate.

5. Discussion and conclusion

We have demonstrated how a sequence of low-resolution images can be computationally pro-
cessed into a full-resolution amplitude and phase image while simultaneously extracting camera
aberrations. While our experimental imaging setup offers proof-of-concept aberration removal
from a series of simple lenses, several steps may help move the OFC concept towards a more
practical device. First, the multiple orders generated by the OFC setup’s transmissive SLM are
undesirable. A reflective optical modulator such as liquid crystal-on-silicon can help avoid this
effect. Second, while we expect minimal variation in the SLM’s angle-dependent amplitude
response at our low angles of incidence (< 9◦) [43], future increased-numerical aperture OFC
setups should consider this effect. Third, the current OFC setup’s detector pixel size oversam-
ples each captured image. A fully optimized OFC setup will match its detector pixel size to the
width of each sub-aperture image’s intensity PSF. Since our final OFC reconstruction’s spatial
frequency passband is 3 times as wide as each detected sub-image’s passband, an optimized
setup will thus reconstruct an image containing 3 times the number of detector pixels along
both x and y. This may of greatest use in detector-limited imaging scenarios.

Finally, modifying the selected SLM coding strategy is an important area of future improve-
ment. Due to the limited sub-aperture size, required exposure times are quite long. Moving to
an alternative aperture coding strategy to increase light throughput, such as displaying multiple
sub-apertures per exposure, can immediately address this shortcoming. Phase-only modulation
may also help decrease total capture time, both by increasing per-image light throughput and
potentially reducing the total number of required acquisitions following [17]’s demonstration.
Likewise, we may minimize artifacts observed in our reconstructed sample phase (e.g., the cu-
bic phase in simulation) with addition of a random offset to each sub-aperture center. This is
a direct and promising change to improve quality. Finally, the current coding strategy offers a
higher total number of overlapped recording positions at lower spatial frequencies. Alternate
sub-aperture arrangements may improve recovery of samples with significant energy in high
spatial frequencies.

Two primary shortcomings currently limit the performance of the SA-OFC algorithm. First,
as already noted above, computational scaling issues require the annealing search to consider
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only a small number of Zernike polynomial aberration coefficients and misalignment param-
eters. Second, instabilities are introduced when solving for multiple parameters that may not
be orthogonal. Although each Zernike decomposition polynomial is mutually orthogonal and
thus does not confuse the annealing’s movement towards minimal error, the geometric align-
ments and Zernike polynomials are not necessarily, which might lead to algorithm stagnation.
Future work will examine more robust methods to search within a high-dimensional unknown
parameter space. Possibilities include gradient descent or a maximum likelihood-based solver,
where the log of the aberration function presents itself as a simple linear sum. These alternative
strategies may additionally benefit from a new aperture coding strategy.

Besides system and algorithm improvement, several applications may directly benefit from
our new imaging strategy. By acquiring an unaberrated quantitative sample phase map, it is
possible to digitally refocus through thick or multi-planar objects. With aberration correction,
an adaptive optics-inspired approach may additionally remove sample-induced distortions and
blurring to help sharpen Fourier ptychography’s performance in this thick and/or turbid object
regime. Also, unlike the original Fourier ptychography system, the OFC setup may extend to
improve the SBP of fluorescence-based images. These two new capabilities will help extend
ptychographic image resolution enhancement into areas that have not yet benefitted much from
its recent invention, and will hopefully enable as yet unachieved system space bandwidths.
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