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1 Introduction
Precise measurements of physiological parameters are necessary
to increase the accuracy of medical diagnostics, thus reducing
unwanted surgical procedures, such as biopsies. Optical meth-
ods are well suited for this task, but their resolution degrades
quickly with imaging depth because biological tissue is typically
highly scattering. For example, confocal microscopy offers a
resolution of 1 to 2 μm but is limited to an imaging depth of 100
to 300 μm.1 Optical coherence tomography is able to increase
the imaging depth at the cost of resolution.

However, several techniques combining ultrasound (US) and
optical measurements have been developed to increase resolu-
tion and imaging depth while maintaining biological sensitivity.
One such method mixes a focused US beam with light in tissue
to create a diffusive wave modulated at the US frequency,
which may then be measured utilizing interferometry, or a sys-
tem capable of collecting an image at the US frequency.2–4

Kothapalli et al.5 utilized this method with US frequencies up
to 75 MHz to experimentally obtain image resolutions in the
tens of microns.

Recently, it has been shown that the US-modulated light can
be used as a guidestar, and the frequency-shifted wavefront can
be utilized to correct for the effects of scattering.6,7 This tech-
nique can achieve US-resolution images at depths of several
millimeters.7 It has recently been shown that this method can
achieve lateral resolutions of 5 μm by the use of initial probe
beam wavefront permutation and optimization.8

The interaction of light and sound in an optically clear
medium has been understood for over 80 years.9 However, the
interaction is much harder to predict in a scattering medium,
such as biological tissue. A model was put forth for US modu-
lation of an optical signal in an infinite homogeneous scattering

medium10 and solved using a Monte Carlo simulation.11 This
model was later improved upon for a US plane wave in an arbi-
trary medium.12–16 Other work has ignored the coherent effects
of light scattering and treats diffuse light using the radiative
transport equation (RTE).17 Recently, Hollmann et al.18 devel-
oped a finite-difference time-domain (FDTD) model that is
capable of solving for the modulated field. These simulations
all have the disadvantage of being computationally intensive
and requiring long run times, although efforts have been made
in parallelizing and executing the Monte Carlo code on rela-
tively quick graphical processing units.19,20

This paper will relate the incident optical flux and fluence
rate, and the depth and strength of the US beam, to the resulting
diffuse optical signal. We will accomplish this by linking the
initial and US-modulated optical field, and develop a relation-
ship for the US-modulated radiance. We will use this to develop
a Green’s function for the modulated diffusive wave.

The intent of this paper is to focus on high US frequencies
necessary for high-resolution imaging because they are of interest
for applications such as phase conjugation. This paper will focus
on experimental systems that use frequencies of 45 MHz and
above to achieve high-resolution images.7,8 The results will be
validated using an FDTD simulation developed previously.18

After validating the model, we will use the results to develop
a closed-form diffusion equation for the modulated sidebands.

2 Diffusion
We will review photon transport through a scattering medium
and the diffusion approximation to the RTE21 in this section.
Several authors offer a thorough discussion on this subject.22–24

However, we will briefly review the salient features here. The
fluence rate describes the energy flow per unit area per unit time
and is independent of flow direction:
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Φð~r; tÞ ¼
ZZ

Lð~r; Ω̂; tÞd2Ω̂ (1)

where L is the radiance at position ~r, traveling in the direction Ω̂
at time t. An infinitesimally small solid angle is described by
d2Ω̂. The flux describes the net energy flow per unit area per
unit time:

~Jð~r; tÞ ¼
ZZ

Lrð~r; Ω̂; tÞ · Ω̂d2Ω̂ (2)

The quantities L, Φ, and ~J have units of power per area and
are fundamentally incoherent. A homogeneous turbid medium is
modeled as having a scattering coefficient (μs) that quantifies
the scatterer’s cross-sectional area per unit volume. The medium
also has an absorption coefficient (μa), which similarly describes
the absorber’s cross-sectional area per unit volume. The scatter-
ing anisotropy (g) is the average cosine of the scattered field
resulting from a plane wave interacting with a single scatterer.
However, the diffusion equation requires scattering to be iso-
tropic, so an equivalent reduced, or transport, scattering coeffi-
cient is given by μ 0

s ¼ μsð1 − gÞ. A transport mean-free path
describes the length after which a light ray loses memory of
its incoming direction and is given as l 0

t ¼ ðμ 0
s þ μaÞ−1.

The radiance and source term may be expanded using spheri-
cal harmonics. Truncating the expansion after the second-term
results in the P1 approximation to the RTE, or

Lð~r; Ω̂; tÞ ¼ 1

4π
Φð~r; tÞ þ 3

4π
~Jð~r; tÞ · Ω̂: (3)

Solving the RTE with this approximation in a turbid medium
leads to the diffusion equation

−D∇2Φð~r; tÞ þ cμaΦð~r; tÞ þ δΦð~r; tÞ
δt

þ 3D
c

"
μa

δΦð~r; tÞ
δt

þ 1

c
δ2Φð~r; tÞ

δt2

#

¼ cQ0ð~r; tÞ − 3D∇ · ~Q1ð~r; tÞ þ
3D
c

δQ0ð~r; tÞ
δt

; (4)

where D ¼ c∕3ðμa þ μ 0
sÞ is the diffusion coefficient, and

Q0ð~r; tÞ and ~Q1ð~r; tÞ are monopole and dipole source terms,
respectively.22 Typically, Eq. (4) is simplified by assuming the
scattering frequency is much larger than the modulation fre-
quency and neglecting the underlined terms.22,23

The source term from the RTE is expanded in a similar man-
ner and results in a monopole and dipole term. The monopole is
given as

Q0ð~r; tÞ ¼ ∇ · ~Jð~r; tÞ þ μaΦð~r; tÞ þ 1

c
δ

δt
Φð~r; tÞ; (5)

and the dipole is

~Q1ð~r; tÞ ¼
1

3
∇Φð~r; tÞ þ μ 0

t
~Jð~r; tÞ þ 1

c
δ

δt
~Jð~r; tÞ: (6)

The underlined terms may be ignored.22 Using this simplifi-
cation, the fluence rate may be written in terms of a differential
equation:

�
∇2 −

μa
D

−
1

D
δ

δt

�
Φð~r; tÞ ¼ −3μ 0

tQ0ð~r; tÞ þ 3∇ · ~Q1ð~r; tÞ:
(7)

Another simplification occurs by assuming the scalar and
vector sources are viewed at a large enough distance that they
appear to be a single isotropic point source. The new point
source is, therefore, given an offset in the direction of the
flux.22,25 The approximations utilized to derive the diffusion
equation limit its region of validity to distances greater than
one l 0

t away from the source.
Typical applications utilizing the diffusion equation include a

boundary between the turbid medium and a nonscattering
medium, such as air or water. This interface is normally
accounted for by using the extrapolated boundary conditions,
which stipulate there is an equal but opposite point source
located on the opposite side of the boundary that forces the flu-
ence rate to be zero at some distance above the interface.23

Furthermore, the extrapolated boundary conditions utilize scale
factors for the fluence rate and flux to account for any index of
refraction mismatch. Solving for these scale factors can be com-
plicated, but tables and linear models of these coefficients exist
elsewhere.26,27

3 US Modulation
This section will relate the field of the probe beam to the radi-
ance of the US-modulated diffusive wave. The modulated field
will then be related to the fluence and flux of the diffusive wave.
We will then use this relationship to create the monopole and
dipole sources discussed in the previous section.

A focused US beam with an angular frequency, ωus, will
interact with the optical signal by linearly modulating the local
index of refraction and introduce a phase delay in the probe
field. Although there is a potential for other US–optical inter-
actions through the displacement or deformation of scattering
particles, these effects are assumed to be minimal at high frequen-
cies. This is because it has been shown that the importance of the
index of refraction modulation grows exponentially larger
than particle displacement with decreasing US wavelength.10

Likewise, nonlinear effects, such as particle motion due to
radiation pressure and heating, may also exist, but these effects
do not produce modulation at the US frequency. This USmodel is
similar to previously published US–optical simulations.18

3.1 Modeling US Modulation

In this section, we will model the US interaction with the optical
probe field. A monochromatic optical field may be described as

E ¼ Aejwot; (8)

where ωo ¼ 2πfo is the wavenumber, and fo is the optical fre-
quency of the light. As the field travels through the medium, it
experiences a phase delay given by

ϕ ¼ k × OPL; (9)

where k ¼ 2π∕λ is the magnitude of the wave vector (~k) in a
vacuum and the optical path length is

OPL ¼
Z

β

α
nðsÞds; (10)
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where the integral is over the path taken from point α to β, and
nðsÞ is the index of refraction at position s. We can coherently
sum the total field contribution at a given position

ET ¼
XG
g

AgejðwotþϕgÞ; (11)

where G is the total number of discrete wave fronts arriving at
the given position. Similarly, the average net energy flow, or
Poynting vector, is given as

~S ¼ 1

η

XG
g

AgA�
g

~kg
k
; (12)

where and and μ0 are the electromagnetic permittivity and per-
meability of free space, respectively. The direction of travel is
given by ~k∕k.

Assuming a linear relationship between pressure and index
of refraction, the time-varying optical phase delay induced by
the US beam is

ϕus ¼ Mejωust þM�e−jωust; (13)

whereM describes the US modulation and ωus is the US angular
frequency. jMj is the maximum phase change induced in the
field and ΔM is the phase delay relative to the electronic oscil-
lator driving the US transducer. As mentioned above, the phase
change due to the US beam is small, so the field may be
expanded using a first-order Maclaurin series or

E ¼ AejðωotþϕusÞ

≈ Aejωotð1þ jMejωust þ jM�e−jωustÞ: (14)

The result is that the small phase modulation produces two
sidebands at the frequencies fo � fus.

3.2 Field-Radiance Relationship

This section reviews the relationship between the field and the
radiance. This will allow us to use the results in Sec. 3.1 to relate
the probe beam field to the radiance modulated at fus. To accom-
plish this, we first decompose the electric field in an infinitesi-
mally small area into a series of angle-dependent plane waves, as
shown in Fig. 1. Each angular-dependent plane wave has the
form

FðΩ̂Þ ¼ AðΩ̂Þejωot; (15)

where AðΩ̂Þ is the complex amplitude of the field. The field is
described by the coherent combination of F over all Ω̂.

E ¼
ZZ

FðΩ̂Þd2Ω̂: (16)

In a scattering medium, FðΩ̂Þ is uncorrelated so that

hFðΩ̂ÞF�ðΩ̂ 0Þi ¼ 0; (17)

for Ω̂ ≠ Ω̂ 0. The brackets, hi, refer to the expected value of the
field term. In Monte Carlo the expectation operation is handled
by randomly varying the scatterers in the medium during the

simulation.28 The decomposition of the electric field may be
related to the incoherent irradiance:

I ¼
�
1

η
EE�

�
¼

�
1

η

ZZ
FðΩ̂Þd2Ω̂

ZZ
F�ðΩ̂0Þd2Ω̂ 0

�

¼
�
⨌

1

η
FðΩ̂ÞF�ðΩ̂ 0ÞδðΩ̂ − Ω̂ 0ÞdΩ̂dΩ̂ 0

�
; (18)

where the Dirac delta function is a result of Eq. (17). The wave
impedance of the medium is given by η ¼ ffiffiffiffiffiffiffiffiffiffi

μ0∕ε
p

.

I ¼ 1

η

�ZZ
FðΩ̂ÞF�ðΩ̂Þd2Ω̂

�
: (19)

The incoherent irradiance is related to the radiance29 by

Ld2Ω̂ ¼ dI: (20)

We use this relationship and the definition in Eq. (1) to write
the fluence rate in terms of the field:

Φ ¼
�jEj2

η

�
: (21)

Similarly, the flux describes the current density and may be
written as

J ¼ h~Si; (22)

where ~S is the Poynting vector and is the result of the cross
product

~S ¼ 1

2
ð~E × ~H�Þ; (23)

and ~H� is the complex conjugate of the magnetic field.

3.3 US Modulated Radiance

We will use the relationship between the radiance and the field
shown above to find the radiance modulated at the US frequency
in terms of the optical probe field. We will then employ the dis-
cussion in Sec. 2 to find the US-modulated fluence rate and flux.

The US beam creates a positive and negative sideband and
the resulting field is described by Eq. (14). To simplify notation,

Fig. 1 The field in an infinitesimally small volume is decomposed into
a series of angle-dependent plane waves, F ðΩ̂Þ.
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the unmodulated field will be denoted with a subscript 0, and the
modulated negative and positive sidebands will be described by
subscripts − and þ, respectively. We will now rewrite the total
field as

Eus ¼ E0 þ E− þ Eþ: (24)

Similarly, the US-modulated radiance in an infinitesimally
small solid angle may be found by using Eqs. (19) and (20):

Lusd2Ω̂ ¼ dΦus ¼
�jF0 þ F− þ Fþj2

η

�
d2Ω̂; (25)

where F0, Fþ, and F− are the angular expansions of the field
for the baseband, and upper and lower frequency components,
respectively. Expanding the terms in a manner similar to
Eq. (14) yields

Lmodd2Ω̂¼
�jAj2

η
ð1þ2jMj2þjMejωust−jM�ejωust

þjM�e−jωust−jMe−jωustþjMj2ej2ωustþjMj2e−j2ωustÞ
�
:

(26)

The reader is reminded thatM is a complex quantity contain-
ing the phase modulation. The resulting modulated radiance has
dc, and �fus and �2fus terms. Typically, the amount of power
modulated into the second order is negligible, so we will drop
it from our discussion here. The ac radiance contains the
components

Lð�fusÞd2Ω̂ ¼ j

�
1

η
jAðΩ̂Þj2ððM −M�Þejωust

− ðM� −MÞe−jωustÞ
�
: (27)

As described in Sec. 3.1, the US modulation in an infinitesi-
mally small area introduces a small phase delay and is purely
imaginary. As a result, the positive and negative modulated dif-
fusive waves must be treated separately (as in Sec. 3.3) at the
point of modulation or the modulated radiance will appear to be
zero. It is important to note that as the fields propagate, the
coherent addition described in Eq. (11) changes. As a result,
they are no longer purely imaginary and we will see amplitude
modulation. Focusing on the radiance modulated into the pos-
itive frequencies, we get

LðfusÞd2Ω̂ ¼ 2

�jAj2
η

Mejωust

�
: (28)

Building upon this result and employing Eqs. (19) and (21)
allows the modulated fluence rate at the US beam to be written
as

Φac ¼ j2Φ0Δnkl; (29)

where the subscript ac will imply the signal is modulated at the
US frequency for the rest of this paper. The reader is reminded
the modulation is due to a US-induced phase delay as described
in Eq. (13). Similarly, the modulated flux is

~Jac ¼ j2~J0Δnkl: (30)

It is important to remember that the j represents a 90-deg
phase shift from the probe beam.

In this section, we have related the modulated radiance to the
probe radiance. We have used this relationship to define the
modulated fluence rate and flux in terms of the probe beam’s
fluence and flux. It is important to note this analysis assumes
the US acts to create a small index of refraction change. We
are assuming the frequency is high enough so that particle
motion may be neglected.

4 Equivalent Sources
In this section, we will develop equations for the monopole and
dipole sources in Eq. (3). We will then create a single effective
source for our Green’s function that accounts for the effects of
both sources.

The diffusion equation for the modulated radiance may be
written in terms of the modulated fluence and flux:

Lac ¼
j
4π

Φ0kΔnlþ j
3

4π
~J0 ·

~k
k
kΔnl; (31)

where the modulated terms originate from Eqs. (29) and (30).
The increment of power modulated into the diffusive wave at

fus can be given in terms of the probe power using the geometry
illustrated in Fig. 2. We recall the definition of radiance is given
as

δ4P ¼ Lδ2Aδ2Ω̂; (32)

where P is the power.29 The incremental power added to the
modulated diffusive wave over an infinitesimal volume of the
US beam (Fig. 2) is given by

δ5Pac ¼ L0δMδ2Ω̂δ2A ¼ L0kΔnδlδ2Ω̂δ2A; (33)

where δM ¼ kΔn · δl and δ2Aδl is the infinitesimal volume of
the US beam discussed earlier. The incremental power can be
related to the scalar source for the diffusive wave by integrating
Eq. (33) over area, or

Qac
0 ¼

ZZ
L0Δnkδ2Ω̂: (34)

Integrating the radiance over all solid angles and employing
the definition of the fluence rate [Eq. (1)] allows us to relate the
incremental power to the probe fluence rate, or

Fig. 2 Geometry. An incident field Eo is modulated by an infinitesi-
mally small ultrasound (US) beam with a width dl and produces
the field Eo þMEoejωus t þM�Eoe−jωus t .
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Qac
0 ¼ j

2

η
Φ0Δnk: (35)

Similarly, the dipole source may be written as

~Qac
1 ¼ j

2

η
~J0Δnk: (36)

We see the monopole source depends on the probe fluence
rate and the dipole depends on the flux.

4.1 Single Source

Typically, the monopole and dipole source terms are combined
to create an equivalent point source. This is because the photon
fluence rate appears to originate from a single, isotropic source
at distances >l 0

t .
22,24,30 To apply the same approximation to the

modulated light, we need to find the position of this equivalent
source. To accomplish this, we will solve for the US-modulated
fluence rate using the linear superposition of the dipole and
monopole source, or

Φacð~r; tÞ ¼
Am

~r
−

AD

4πð~rþ d∕2Þ þ
AD

4πð~r − d∕2Þ ; (37)

where Am is the amplitude of the monopole source. The dipole
source is represented by two oppositely charged monopoles that
have equal amplitudes, AD, and are separated by a distance h.
The monopole amplitude is given by the volume integral

Am ¼
ZZZ

V
Qac

0 dV: (38)

The reader is reminded that Am is a sum of the total incre-
mental power in the positive sideband described in Eq. (33).
Similarly, the dipole–distance product is given by

hAD ¼ l 0
t

ZZZ
V

~Qac
1 · n̂ dV; (39)

where n̂ is the normal and the volume integral measures the
divergence of ~Q1ð~r; tÞ. Using the far-field approximation, we
can expand the dipole fractions using the Maclaurin series.
After the necessary approximations, we find

Φacð~r; tÞ ≈
Am

4πð~r − hAD∕AmÞ
: (40)

It is interesting to note the amplitude of the equivalent iso-
tropic source relies only on the monopole term. This is expected
as the positive and negative point sources will negate each other
at distances far from the dipole and, therefore, will only affect
the apparent position of the monopole if it is not centered
between the sources. The position of the source is given by
an offset from the US dot:

~Δ ¼
~Qac
1

Qac
0

h ¼
~J0
Φ0

l 0
t ; (41)

where Eqs. (38) and (39) were utilized to find the monopole
strength and dipole–distance product, respectively.

The derivation of the source strength and offset above
assumes the effect of the US–optical interaction may be

modeled by a phase shift in the optical field. However, at
low US frequencies, the US-induced harmonic motion of scat-
ters may not be ignored. Sakadžić and Wang12 developed auto-
correlation functions for the signal due to change in index of
refraction, motion of scatterers, and their cross-correlation. The
ratio of coefficients from their work may be utilized to determine
the monopole source from our calculation. However, the calcu-
lation of the dipole source, and thus the location of the effective
source, would require repetition of the present work with con-
sideration of particle motion.

5 Modulated Diffusion Equation
Wewill use the Green’s function derived in the previous sections
to create a diffusion equation for a modulated diffusive wave in a
semi-infinite, homogeneous turbid medium. We have chosen
this geometry because it is commonly utilized in biomedical
applications. The goal of this section is to relate the probe
beam’s power, the US strength, and depth to the diffusely
reflected, US-modulated signal in a semi-infinite, homogeneous
medium. For this discussion, our probe beam is an infinitesi-
mally narrow, monochromatic source, normally incident upon
the surface of a scattering medium as illustrated in Fig. 3. The
probe source is located at the origin of the coordinate system and
the positive z-axis points down into the medium. The medium
has homogeneous reduced scattering and absorption coefficients
that satisfy μa ≪ μ 0

s. This geometry has been discussed in detail
elsewhere and is well known. We will briefly review the details
and the boundary conditions here for completeness.

The light source enters the medium at the origin and is
approximated by an equivalent isotropic source located one
transport mean-free path (l 0

t ) down in the medium. The US
dot is located some distance away from the point source
along the optical axis and has a radius, Rus. In order to estimate
the fluence and flux at the US dot, we stipulate zus − Rus > 2l 0

t .
Using the diffusion approximation, the fluence rate at an infini-
tesimally small US dot is given as

Φ̃0ðz ¼ zusÞ ¼
ca 0

4πD
exp½jkDðzus − l 0

t Þ�
zus − l 0

t
; (42)

where a 0 ¼ μ 0
sl 0

t is the scattering albedo. To clarify subsequent
discussions, parameters and values pertaining to the diffusion
equation will be denoted with a superscript ˜. The effect of
the boundary conditions are negligible at the modulation loca-
tion and may be ignored. The diffusive wave number is given as

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−cμa þ jωMÞ∕D

p
; (43)

Fig. 3 Geometry for diffusion model.
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where ωM is the angular modulation frequency. The imaginary
part of k is the effective attenuation coefficient. We are assuming
the boundary conditions are negligible at the depth zus. The flux
may be approximated as

~̃J ¼ −
D
c
∇Φ̃: (44)

This approximation is typically valid for frequencies that
are <1 GHz.23

As mentioned above, the US dot creates a modulated diffu-
sive wave originating from a point. The point is offset from the
US dot to account for the probe beam’s flux, as stipulated by
Eq. (41), with a strength given by Eq. (38). The offset is entirely
along the z axis because the US dot is in line with the optical
axis. To emphasize this, we will replace ~Δ with Δz. The equiv-
alent source is shown in Fig. 4(a).

The distance between the equivalent point source and the
measurement location with the coordinates xm, ym, and
zm ¼ 0 is illustrated by r1 in Fig. 4(b) and given by

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2m þ y2m þ ðzus þ ΔzÞ2

q
: (45)

As mentioned earlier, the extrapolated boundary conditions
require an equivalent negative point source at some distance
above the surface of the medium. Figure 4 illustrates the neg-
ative point sources for both the probe and US-modulated diffu-
sive waves. The negative point source forces the radiance to be
zero on a plane with a position along the z axis defined by

zb ¼ −2AD; (46)

where A is a constant related to the index of refraction mismatch
at the boundary interface.26,27 The negative sign implies the
plane is above the medium. We will assume a matched index of
refraction, so that A ¼ 1. The distance between this negative,
modulated point source and the measurement location is
given by

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2m þ y2m þ ð−zus − Δzþ zbÞ2

q
: (47)

Using these terms, we can approximate the diffusely modu-
lated fluence rate at a measurement location on the boundary as
a superposition of the two sources, or

Φ̃acðx; y; 0Þ ¼
cAm

4πD

�
expðjkDr1Þ

r1
−
expðjkDr2Þ

r2

�
× expð−jωMtÞ: (48)

It is important to note that the boundary conditions must be
included and, hence, the need for a negative point source in this
case. Assuming a numerical aperture of 1 and that the scattering
medium is index matched to the ambient medium, the reflec-
tance at the boundary is23

R̃ac ¼
1

4
Φ̃ac þ

1

2
∇~̃Jac · n̂; (49)

where n̂ is the unit vector pointing along the negative z axis.
This is typically simplified by assuming the flux vector, and
thus the gradient of the fluence, is normal to the boundary so that

∇ ~Φ ≈
δ

δz
~Φ (50)

at the boundary.
This section derived a closed-form solution that relates the

modulated diffusive wave to an initial probe beam in a semi-
infinite homogeneous medium. Calculating the flux at the US
beam becomes complicated if the radius of the US dot is on
the size order of the probe beam’s diffusive wave and must be
solved using convolution. Of course, this solution may be uti-
lized in other geometries with the application of appropriate
boundary conditions.

6 FDTD Simulation
We will utilize a numerical simulation of US and light interac-
tion to verify the parameters derived in Secs. 3 and 4. The sim-
ulation utilizes a two-dimensional FDTD solution to Maxwell’s
equations to propagate an optical field through a scattering
medium. The effect of the US beam is modeled for different
phases, and the results are linearly combined to find the modu-
lated field. This model has been described elsewhere,18,31 so we
will discuss only the salient features here.

The FDTD is utilized to propagate a TMz polarized optical
field, where the z axis is the third dimension that is not simu-
lated. To keep units consistent with physical quantities, it is
assumed the medium extends 1 m along the third dimension.
Maxwell’s equations were discretized in time step sizes of
0.89 fs and pixels of 47.4 × 47.4 nm. The simulation was
allowed to run for 20,000 time steps (or ∼1.79 ps) to ensure the
optical wave reached steady-state conditions within the simu-
lated medium. We verified the wave reached steady state by
examining the time histories. Each simulation took ~28 h in
MATLAB® (R2012a, The MathWorks, Natick, MA) for an
area of 130 × 160 μm2 along the width and depth dimensions,
respectively, running on a Platform HPC 3.0 on Red Hat Enter-
prise Linux 6.1 named Venture at Northeastern University.
The cluster has 80 nodes, each with dual-core processors

Fig. 4 (a) Geometry for diffusion model. The probe beam is converted
to an equivalent source one transport mean-free path deep in the tis-
sue and the US dot is located at zus. The modulated diffusive wave’s
origin is offset from the US beam, along the z axis, and is given byΔz.
The fluence goes to zero at zb above the medium. (b) The measure-
ment location is located r 1 and r 2 distance away from the positive and
negative point sources, respectively.
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and between 4 and 8 GB of RAM. The queue system is a load
sharing facility engine.

6.1 Synthetic Phantom

A synthetic phantom was created to simulate a highly scattering
medium shown in Fig. 5. The phantom simulates titanium oxide
(n ¼ 1.48) suspended in gel (n ¼ 1.33) and is similar to phan-
toms used in previous scattering experiments32 and simula-
tions.18 This is a two-dimensional simulation, so the scatterers
are actually cylindrical, and to preserve the units for our numeri-
cal calculations, we assume they extend 1 m along the third
dimension. The phantom measures 130 × 155 μm and contains
∼9700 randomly distributed cylinders. The cylinders have a
diameter of 532 nm but are allowed to overlap so they can
make complicated shapes. The high density of scatterers and
their irregular shapes indicate that we may not use Mie scatter-
ing to characterize this medium.33 Even though the particles are
randomly distributed, their positions are fixed for all simula-
tions. The reduced scattering coefficient was determined by
comparing the flux and fluence rate using

μ 0
s ¼ −

∇Φ0

3~J0
: (51)

The reduced scattering coefficient is 680 cm−1 and l 0
t ¼

14.7 μm. While the reduced scattering coefficient is over an
order of magnitude larger than expected for most tissue, it
was chosen so that diffusion effects may be observed within
a reasonable computational area. This phantom does not contain
absorbers.

The US modulation is modeled as a cylindrical beam with a
diameter of 7.4 μm centered at 120 and 70 μm along depth and
transverse axis, respectively, and is illustrated in green in Fig. 5.
The diameter is ∼25% greater than the US wavelength in tissue.
This model would be difficult to implement physically, but it
provides insight into the microscale effects of modulation. A
plane wave with a wavelength of 632 nm is turned on and pla-
teaus at full intensity after 1.4 fs. The beam extends 1.9 μm
along the transverse axis.

7 Results
As discussed above, a probe beam is utilized to interrogate
the scattering medium described in Sec. 6.1. The resulting irra-
diance, as simulated by the FDTD model, is illustrated in
Fig. 6(a), where the scattering medium is illustrated in gray
and the probe’s irradiance is illustrated in red. The probe’s
Poynting vector distribution is illustrated in Fig. 6(b). The direc-
tion of the Poynting vector is illustrated with color, where red
indicates the vector is directed down along the depth axis and
cyan indicates a vector in the opposite direction. The intensity of
the graph’s colors indicates the magnitude of the Poynting vec-
tor. Pixels containing a magnitude below a given threshold are
set to white.

The fluence rate of the probe beam is found using Eq. (21)
and the FDTD-simulated irradiance. The reader is reminded that
results derived using the diffusion approximation will be
denoted with a superscript ðÞ̃. The ensemble average is com-
puted by convolving the irradiance with a uniform 5 × 5 μm
mask using MATLAB®’s conv2 function. The mask size was
chosen to minimize the appearance of coherent effects, and the
resulting fluence rate is illustrated in Fig. 6(c). Similarly, the flux
is calculated utilizing Eq. (22) and is illustrated in Fig. 6(d).

It is interesting to note that both the Poynting vector and flux
exhibit a strong component in the forward direction as well as
two side lobes. These side lobes have a divergence that is pre-
dicted by diffraction for a rectangular aperture29

θdiv ¼
2λ

Dln
; (52)

whereDl is the width of the incident beam. For our aperture size
of 1.9 μm, θdiv ¼ 29 deg. The blue line in Fig. 6(b) diverges
from the normal at θdiv and predicts the divergence angle of
the probe beam, at shallow depths, accurately. It is important
to note that the RTE does not predict the existence of these
coherent effects.

7.1 Sideband

The US dot is introduced and the probe field is modulated to
create sidebands at frequencies fopt � fus. The sidebands are
symmetric around the carrier frequency, so that their irradiances
have the relationship Iðf þ fusÞ ¼ Iðf − fusÞ, though there is a
180 − deg phase shift between the two fields. The fluence rates
for both sidebands are illustrated in Fig. 7(a). As discussed in
Sec. 4.1, we see the flux from the probe beam is encoded in the
sideband and the fluence is not uniformly distributed around the
US beam. The sideband’s flux is illustrated in Fig. 7(b) and
exhibits a strong downward component.

The optical power modulated into the sideband may be com-
puted by using the divergence theorem, which states

Pac ¼
ZZZ

V
∇ · ~Sð~rÞdV; (53)

where V is an arbitrary volume that encloses the US beam
source. Figure 8 demonstrates the enclosed power in the side-
band within a cylinder centered on the US dot for varying radii.
The enclosed power increases with cylinder diameter and
reaches a steady state just past 3.7 μm, which is the US dot’s
radius. The total power in the sideband is 0.05 pW. It is

Fig. 5 Geometry of the synthetic scattering phantom. The scatterers
are randomly distributed throughout the medium and have a radius of
532 nm. The index of refraction of the scatterers is 1.48, and they are
embedded in a medium with n ¼ 1.33. The US dot is illustrated in
green and is centered at 60 and 65 μm along the depth and transverse
dimensions, respectively. The US dot has a radius of 7.4 μm.
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Fig. 6 A collimated beam is propagated through the synthetic medium shown in Fig. 5 utilizing a finite-
difference time-domain (FDTD) simulation. (a) A visualization of the resulting irradiance (red) superim-
posed on the medium (gray). The source’s position is illustrated by the solid red line (top of the figure).
(b) The magnitude and direction of the calculated Poynting vector in the medium. The intensity of the
pixels represents the magnitude of the Poynting vector, with pixels containing a magnitude below a given
threshold set to white. The color of the pixels illustrates the direction of the vector with units of radians.
The fluence rate (c) is calculated using Eq. (21). The colorbar has units of w∕m2. The flux in (d) is calcu-
lated using Eq. (22) and is displayed in a similar manner as the Poynting vector in (b). It is interesting to
note that the light diverges within the medium at approximately the divergence angle. The blue line rep-
resents the divergence angle of 632 nm light from the light source as calculated by Eq. (52).

Fig. 7 FDTD results for (a) the US-modulated sideband’s fluence rate (red) is illustrated superimposed
on the synthetic scattering medium (gray). The US dot’s location is illustrated by the solid green circle.
(b) The magnitude and direction of the modulated flux is illustrated. As in Fig. 6 figure, the color and
intensity of the pixels illustrate the direction and magnitude of the vector, respectively. We see the modu-
lated flux vector continues to be weighted in the depth direction.
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interesting to note that the enclosed power would not be a con-
stant if the optical signal did not reach steady state.

We use the power modulated into the diffusive wave to cal-
culate the modulation cross section:

σcalc ¼
Pac

Φ0

: (54)

We can compare this to the predicted cross-section, which
should be proportional to the surface area of the US dot, or

σp ≈ πd · z; (55)

where d is the diameter of the US dot. The reader is reminded
that the unsimulated dimension for the FDTD is assumed to
extend for 1 m, so z ¼ 1 m. We use the circumference to
account for the fact that the US dot is illuminated from all direc-
tions. We calculate the cross-section to be σcalc ¼ 22 μm2 using
the simulation data and σp ¼ 23 μm2 using the approximation
in Eq. (55).

7.2 Modulated Diffusive Wave

The modulated fluence rate (at fus) may be calculated from the
FDTD simulations as follows:

Φac ¼
�
E0E�

− þ EþE�
0

η

�
; (56)

where E0, E−, and Eþ are the baseband and negative and pos-
itive modulated fields, respectively. Figure 9(a) illustrates Φac.
We see that the effect of the US dot is visible and that Φac is at a
maximum within its diameter. We also note that Φac is small
near the surface of the scattering medium even though the
probe beam is at a maximum. It is interesting to note the com-
plex signals from the sideband and carrier frequencies are
encoded in the result as real numbers and can be negative. This
is still physical because the fluence rate for the entire signal
is >0.

7.2.1 Verifying ac diffusive wave’s source location

The single-source diffusion approximation, discussed in
Sec. 4.1, suggests that diffusive light appears to be emitted
by a single isotropic point source. The location of the isotropic
point source for the initial probe beam, for the geometry illus-
trated in Fig. 5, is one transport mean-free path along the depth
axis and in the medium as described in Sec. 2. However, the
equivalent isotropic source for the modulated (or ac) diffusive
wave must incorporate the flux of the probe beam as described
in Sec. 4.1. We can use the simulated probe beam to predict the
modulated isotropic source’s location using Eq. (41). To
account for the finite size of the US beam, the result is aver-
aged over its volume. The predicted offset from the center of
the US beam is 6 μm along the depth direction and 1 μm along
the x axis. As expected, the offset is primarily along the depth
direction.

This source location should be similar to the intensity-
weighted center of the actual fluence rate of the modulated dif-
fusive wave (shown in Fig. 9), which is found using

~c ¼

ZZZ
V
Φacð~rÞ~rdvZZZ

V
Φacð~rÞdv

; (57)

where V is the volume of interest. The center of the actual modu-
lated diffusive wave’s fluence rate is offset from the center of the
US dot by 7.4 μm in the depth direction and −0.5 μm along the
x axis.

Fig. 8 Power in the sideband, as simulated by the FDTD and com-
puted using divergence theorem in Eq. (53). As expected, the
enclosed power increases until it reaches the boundary of the US
beam at 3.7 μm and is ∼0.05 pW.

Fig. 9 Fluence rate for the diffusive wave modulated at f us. The color
bar represents intensity in W∕m2.

Table 1 The resulting modulated power and offset of the equivalent
isotropic point source for varying depths of zus.

zus (mm) Modulated power (fW) Offset (mm)

2 79.1 0.351

3 37.4 0.185

4 23.6 0.129
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7.2.2 Verifying ac diffusive wave’s source strength

Equation (40) illustrates that the strength of the equivalent iso-
tropic source for the ac diffusive wave is given by the monopole
term Am. Using Eq. (38), we can predict the monopole’s
strength, using the simulated probe beam, and the result is
Am ¼ 12.7 pW. This equivalent source strength encompasses
all the power in the modulated diffusive wave. We compare
the predicted results to the actual power modulated into the pos-
itive frequency diffusive wave, which is found by

Pac ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
P0Psb

p
; (58)

where P0 ¼ 6.9 nW is the initial probe power, and we get the
sideband power from Fig. 8, Psb ¼ 50 fW. The resulting modu-
lated power in the simulated diffusive wave is 11.7 pW.

8 Diffusion
Wewill utilize the discussion in Sec. 5 to analyze US-modulated
diffuse reflectance from a semi-infinite turbid medium. This
medium is illuminated with a normally incident, infinitesimally
narrow laser beam with a wavelength of 633 nm as shown in
Fig. 3. The turbid medium has homogeneous optical properties
with μ 0

s ¼ 10 cm−1 and μa ¼ 0.01 cm−1, which are similar to
biological tissue.24,34

The initial probe fluence rate is simulated using the steady-
state diffusion approximation in Eq. (42). The flux is then cal-
culated using Eq. (44). The resulting diffused light is modulated
by a focused, 50-MHz US beam. The beam is modeled as a uni-
form sphere with 29 μm radius and is located on axis with the
optical source. The index of refraction is uniformly modulated
within the US sphere by a factor of 1/1000. The resulting dif-
fusive wave can now be modeled by an equivalent isotropic
source with strength given by Eq. (38). The source is offset from
the center of the US sphere with a distance given by Eq. (41).

Table 1 illustrates the resulting strength of the modulated
equivalent isotropic source, and its offset, for increasing
depth locations zus of the US sphere. We note that the modulated
reflectance is small. This is, in part, due to the relatively small
cross-section of the US dot, which is σp ¼ 2.6 nm2. We note the
modulated power decreases exponentially as the US sphere
probes greater depths. It is interesting to note the offset also
decreases with depth.

The parameters in Table 1 were utilized to solve for the dif-
fuse reflectance using Eq. (49). Figure 10(a) illustrates the
resulting reflectance, on a log plot, of the modulated diffusive

waves for US dots at varying depths. The geometry is radially
symmetric around the optical source, so the results are presented
in radial coordinates. As expected, the peak power occurs at ρ ¼
0 and the signal decays exponentially with distance. We also see
the slopes of the modulated reflectance curves vary even though
the turbid medium is unchanged. This implies the slope of the
US modulated diffuse reflectance depends on both the optical
properties of the medium and the position of the US modulation.
It is interesting to note that the probe beam diffuse reflectance
will have a slope related to the effective attenuation coefficient.

9 Conclusion
This paper developed a Green’s function for US-modulated dif-
fuse reflectance. We linked the incident optical probe and the
US-modulated field, and developed a relationship for the US-
modulated radiance. We then applied the P-1 approximation
to the RTE to create a diffusion equation for the modulated dif-
fusive wave. We then simulated US modulation of a probe beam
using a previously published model and the results were utilized
to validate our predicted values. We also used these results to
verify the approximate effective cross-section of a US dot in
a scattering medium. Although the results were demonstrated
on a relatively unrealistic geometry, the equations presented
are general enough to be applied elsewhere.

We illustrated the strength of this approach by developing a
closed form solution that relates the incident probe power and
the US strength and depth to the received optical signal. Finally,
we demonstrated the effect of varying the US modulation depth
on the modulated diffusive wave.
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