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Abstract: A new computational imaging technique, termed Fourier
ptychographic microscopy (FPM), uses a sequence of low-resolution
images captured under varied illumination to iteratively converge upon a
high-resolution complex sample estimate. Here, we propose a mathematical
model of FPM that explicitly connects its operation to conventional pty-
chography, a common procedure applied to electron and X-ray diffractive
imaging. Our mathematical framework demonstrates that under ideal
illumination conditions, conventional ptychography and FPM both produce
datasets that are mathematically linked by a linear transformation. We hope
this finding encourages the future cross-pollination of ideas between two
otherwise unconnected experimental imaging procedures. In addition, the
coherence state of the illumination source used by each imaging platform
is critical to successful operation, yet currently not well understood. We
apply our mathematical framework to demonstrate that partial coherence
uniquely alters both conventional ptychography’s and FPM’s captured data,
but up to a certain threshold can still lead to accurate resolution-enhanced
imaging through appropriate computational post-processing. We verify this
theoretical finding through simulation and experiment.
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1. Introduction

In ptychographic imaging, also commonly referred to as scanning diffraction microscopy, a
sample is shifted across a narrow illumination beam and a series of diffraction intensity patterns
are recorded. The acquired image data is then computationally processed into an improved-
resolution estimate of the sample’s amplitude and phase transmittance. Ptychography’s unique
procedure has recently lead to the generation of many impressive X-ray and electron micro-
scope images that defy the conventional resolution limitations of their detectors and focusing
elements [1–5]. This resolution enhancement has also spread to optical imaging [6, 7], where a
novel technique termed Fourier ptychographic microscopy (FPM) was recently introduced [8].
Like conventional ptychography (here on abbreviated as CP), FPM also offers simultaneous
resolution enhancement and sample phase recovery from a collection of images. Unlike CP,
however, FPM images a sample under variable-angle illumination provided by a fixed array
of light-emitting diodes (LEDs). The goal of this current work is to compare and contrast the
CP and FPM procedures to bring each approach under a common mathematical framework. In
doing so, we hope to encourage a cross-pollination of ideas and efforts to help both techniques
progress in high-resolution complex object recovery in the optical regime.

Because of their convenient form, we choose to represent the data collected by each style of
ptychography with a class of function commonly referred to as a phase-space distribution. As
we will see, a phase-space distribution known as the Wigner distribution function (WDF) will
allow us to connect all setup parameters within CP and FPM in a compact formula. A related
procedure was previously employed in [9, 10] to help explain CP’s ability to enhance image
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resolution in electron microscopy.
Here, we first build upon this prior work to connect the operation of CP to its new Fourier

counterpart, FPM, in the optical domain. Second, we apply our unique mathematical model
to account for the effects of partially coherent illumination sources in both systems. Partial
coherence plays a fundamental role both in X-ray and electron microscopy where highly co-
herent sources are not available, and with optical setups aimed towards speckle-free imaging
using LEDs. While [9] also presents a theoretical model of partially coherent CP, we derive a
new set of expressions for both CP and FPM that clearly establish how the finite shape of an
incoherent source uniquely impacts each setup. These expressions are then verified in simula-
tion and experiment by computationally removing the effects of partial coherence from final
reconstructions. While previously considered in the context of single images [11] and for CP
data when the illumination’s coherence state is unknown [12], no work has yet attempted to re-
move a known coherence function from a collection of ptychographic images. We aim this type
of removal as a first step towards a comprehensive understanding of techniques using either
coherent or incoherent active illumination to improve resolution.

However, we emphasize here that the primary aim of this work is to present an accurate
physical optics-based model of FPM, connecting it to CP to clearly establish its function within
a broader class of computational imaging methods. Our demonstration of coherence removal is
mainly aimed as a verification of this model, but also points to several new benefits that phase
space offers both techniques, which warrant future investigation.

The remainder of this paper is outlined as follows. In Section 2, we use a phase space model
to demonstrate that CP and FPM datasets, to first-order, are connected by a linear canonical
transform (a 90◦ matrix rotation). In Section 3, we use this model to visualize how parameters
like illumination shape, lens geometry, and detector size impact each experimental setup. In
Section 4, we incorporate the effects of partial spatial coherence into our phase space frame-
work. First, we derive how a partially spatially coherent illumination source alters the CP and
FPM datasets through a unique convolution operation. Second, we show how this convolution
operation can be computationally removed to maintain data useful for resolution enhancement.
Section 5 tests the comparisons developed in Sections 3-4 with a simple simulation and exper-
iment. The partially coherent phase space model is verified, and our demonstration solidifies
how deconvolution can improve the fidelity of CP and FPM reconstructions. While our phase
space model is closely connected to a rich array of computational post-processing tools, we
explicitly avoid their discussion until the conclusion, where we list several direct extensions
that will benefit from this primarily theoretical work.

2. Mathematically connecting conventional and Fourier ptychography

In this section, we introduce a mathematical framework to summarize the operation of both CP
and FPM. We show how two otherwise unique optical setups - one capturing the diffracted light
from a moving sample, and the other capturing images of a fixed sample evenly illuminated by
an array of sources - create nearly identical datasets.

2.1. The conventional ptychography (CP) setup

Our first steps toward a common mathematical framework are to outline the standard elements
of a CP setup, model how light passes through it, and then convert our findings into a suitable
phase space representation. The basic setup, notations and derivations used here closely follow
those previously employed in [9, 10]. Unlike these prior works, our final expression demon-
strates a unique convolution relationship that will help us directly connect CP’s parameters
with FPM’s. Furthermore, the following derivation sets the stage for simple inclusion of partial
coherence effects, which are vital to our careful comparison of the two setups’ performance in

#199816 - $15.00 USD Received 22 Oct 2013; revised 16 Dec 2013; accepted 17 Dec 2013; published 2 Jan 2014
(C) 2014 OSA 13 January 2014 | Vol. 22,  No. 1 | DOI:10.1364/OE.22.000338 | OPTICS EXPRESS  340



Sample ψ(r-x )!Aperture a(r' )! Detector!

δx	  

shift 
position x"

S(r) !A(r') ! D(r') !

w"

Conventional Ptychography Setup!

I(r) !

Source!

f" d"

image 
m(r' )!

l�

Fig. 1. Conventional ptychography’s optical setup. A sample ψ (in green) is shifted through
many positions as the intensity of the probe light it diffracts is recorded at a far-field de-
tector. In a typical visible light setup, the lens at A(r′) is a multi-element system containing
the aperture stop a(r′) at some intermediate plane, as diagrammed.

Section 5. Reciprocal space coordinates will be designated with the absence of a prime, and
reciprocal space functions will include a tilde (e.g., the Fourier transform of a(r′) is ã(r)). Note
that here both r and r′ will have units of meters, since they represent the spatial axis of an
imaging system’s two Fourier conjugate planes. A schematic diagram of a scanning CP setup
containing two sets of such planes is in Fig. 1. While deviations exist, most recent ptycho-
graphic experiments generally follow Fig. 1’s optical outline. The following analysis considers
a two-dimensional imaging geometry, for simplicity. Extension to three dimensions is direct.

A standard CP setup first focuses light from an illumination plane I(r) onto a shifting sample
and records a series of far-field diffraction patterns. We assume I(r) contains an ideal point light
source that produces a quasi-monochromatic plane wave (wavelength λ ) propagating parallel
to the optical axis at a large distance `. The case of a non-ideal point source will be considered
in Section 4. At distance ` is an aperture plane A(r′) containing a lens of focal length f . Directly
past this plane, the optical field may be described across all space simply as a(r′), the aperture
transmission function.

This incident plane wave, confined to a(r′), is focused by the lens to a small area at the
sample plane, S(r). Under the Fresnel approximation, the shape of the focal spot before hitting
the sample is proportional to the scaled Fourier transform of the field at aperture transmission
function, ã(r′) [13]:

S+(r) =
exp
(

jk
2 f r2

)
jλ f

∫
a(r′)exp

(
− jk

f
r · r′

)
dr′ ≈F

[
a(r′)

]
= ã(r), (1)

where F is the Fourier transform operator, S+(r) is the field directly before the sample, and
the approximation assumes the phase pre-factor is unity. This common unity approximation is
used e.g. in [9]’s related analysis and is justified for a well-corrected Fourier-transforming lens
in [13]. It becomes mathematically evident when considering typical samples much smaller
than the lens focal length, with r << f . All integrals are assumed to extend from negative to
positive infinity. The above expression also ignores a constant coordinate scaling factor: ã(r)
should actually be written as ã(r/λ f ). For clarity, we will generally neglect constant scaling
factors. Details of scaling effects may be found in Appendix A. ã(r) typically takes the form of
a sinc function as in Fig. 2, but may be arbitrarily shaped. For example, several ptychographic
setups use a pinhole or alternative aperture to define the shape of ã(r) close to the sample
plane [6, 7].

Independent of its specific distribution, the confined beam ã(r) then interacts with a shifted
sample ψ to produce an exiting optical field, S(r). We assume the effect of sample thickness
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Fig. 2. Conventional ptychography (CP) data acquisition. A chirped amplitude grating (400
µm wide, 4µm minimum pitch) serves as our sample ψ(r). It is shifted and illuminated by
a probe function ã(r), here a sinc function from a rectangular-shaped focusing element.
At detector plane D, the diffracted light’s intensity is recorded. (Bottom) Corresponding
probe and sample Wigner functions, whose two-dimensional convolution creates CP’s data
matrix m(x,r′). Note specific parameters used for this simulation are listed in Section 3.

upon diffraction is negligible, allowing us to define the optical field S(r) directly past the sample
as a multiplication of ã(r) and the sample transmission function ψ:

S(r) = ã(r)ψ(r− x). (2)

Here, x is the sample’s shift distance perpendicular to the optical axis. The thin object ap-
proximation holds if the maximum sample thickness t obeys t << 4δ 2

res/πλ , where δres is the
sampling resolution [14]. S(r) then propagates a large distance d to far-field detector plane D,
where (as a first approximation) the intensity of the Fourier transform of S is measured:

m(x,r′) = |F [ã(r)ψ(r− x)] |2. (3)

Here, m(x,r′) is a two dimensional function of probe shift distance (x) and space (r′), and com-
prises our data matrix. In experiment, m(x,r′) is filled up, column-by-column, with discretized
diffraction images captured at the detector for many shift distances x (see example in Fig. 2).
For two-dimensional images, m(x,r′) is a four-dimensional function.

2.2. Phase space representation of CP

The structure of CP’s data matrix m(x,r′) reveals information about the spatial frequency con-
tent of the sample ψ along the r′ dimension, thanks to the Fourier transform in Eq. (3). Likewise,
since the probe only hits a narrow segment of the sample ψ at a given scan position, ψ’s spatial
structure is also partially resolved along the scanning dimension x. This joint preservation of
both spatial and spatial frequency sample information within m - a property held by any optical
phase space function [15] - was first explored in [9]. A clear connection between m(x,r′) and
optical phase space is found by applying a few mathematical transformations to Eq. (3). First,
expanding it into integral form produces,

m(x,r′) =
∫∫

ã(r1)ã∗(r2)ψ(r1− x)ψ∗(r2− x)exp
[
− jkr′ · (r1− r2)

]
dr1 dr2, (4)
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where the double integral over new spatial variables (r1,r2) results from measurement of inten-
sity at the detector, and ∗ denotes complex conjugate. From here, straightforward manipulations
produce an expression for the data matrix m as a convolution of two functions:

m(x,r′) =
∫∫

Wψ(r− x,u)Wã(r,r′−u)dr du, (5)

where constant pre-integral multipliers are neglected for clarity. The function W applied to ψ

takes the form,
Wψ(r,u) =

∫
∞

−∞

ψ

(
r+

y
2

)
ψ
∗
(

r− y
2

)
exp(− jkyu)dy (6)

and is known as the Wigner distribution function (WDF) of ψ . Equation (5) describes CP’s
set of diffraction intensity images as a convolution of two functions solely related to the shape
of the sample and the probe beam, respectively (i.e., the WDF separates the sample transmis-
sion function and probe beam into a linear expression). This is graphically depicted in Fig. 2.
Note that while not explicitly included in this paper, the interested reader is invited to use the
derivation steps in Appendix B to help create Eq. (5) from Eq. (4).

The WDF is a well-studied phase space distribution that is often used to analyze optical
imaging setups [15–17]. Like the Fourier transform, it transfers a function of one “primal”
variable r into a new space. Unlike the Fourier transform, which offers a one-to-one mapping
between the primal variable r and its conjugate u (here a mapping between space and spatial
frequency), this new space is two-dimensional. The WDF is a joint function of both the primal
spatial variable r and the conjugate spatial frequency variable u. Although defined in a higher-
dimensional space, Wψ maintains a one-to-one relationship with the complex function ψ (apart
from a constant phase shift). While not always exact, it is convenient to connect the value of
W (r0,u0) to the amount of optical power at point r0 propagating in direction u0. However, while
the WDF is real-valued it is not necessarily non-negative, which requires this interpretation to
be taken loosely.

The goal of ptychography’s many post-processing algorithms is to recover the complex sam-
ple function ψ , which has a one-to-one relationship with Wψ , from its recorded dataset m. This
goal is computationally related to deconvolving the effect of the aperture a, described by Wã,
from m(x,r′) in Eq. (5). Deconvolution is often indirectly achieved through a phase retrieval
algorithm [18]. Before proceeding, it is worth mentioning several challenging features exhib-
ited by the above CP arrangement when considered in an optical microscopy context: its low
collection efficiency of lensless detection hampers signal-to-noise, scanning of the sample re-
quires mechanical motion that introduces instabilities during detection, and the large extent of
the probe across space is challenging to accurately characterize, although several recently de-
veloped algorithms now account for this [19,20]. As we show next, the recently proposed FPM
technique in [8] also recovers a complex sample ψ via deconvolution of a high-dimensional
dataset, but is able to circumvent the above list of limitations.

2.3. Mathematical representation of Fourier ptychographic microscopy (FPM)

FPM also acquires a sequence of images that are compiled into a data matrix (here labeled mF )
but does so using the unique optical setup in Fig. 3. Two primary experimental differences set
FPM apart from the CP setup outlined above: an array of n LEDs now occupy the illumination
plane I(r), and the locations of the sample and aperture planes are effectively switched. Instead
of recording the diffraction pattern from a small illuminated sample region, FPM images the
entire sample under illumination from different directions.

Again, we begin by assuming each LED in the array occupying the illumination plane I(r)
emits a quasi-monochromatic and spatially coherent field at wavelength λ (partially coherent
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Fig. 3. Fourier ptychographic microscopy’s (FPM) optical setup. An LED array replaces
CP’s single illumination source in Fig. 1, and planes S(r′) and A(r) have switched places
along the optical axis. Each LED sequentially illuminates the sample from a different angle.

illumination is included in Section 4). Each LED sequentially illuminates the entire sample
plane S(r′) a distance ` away with an angled plane wave. Next, the illuminated sample is imaged
by a lens of focal length f located at aperture plane A(r). In practice, the employed lens is a
microscope objective (MO), although in principle, any style of image-forming optic will result
in a similar analysis. At detector plane D(r′), a pixel array samples the image intensity at
spacing δx = λw/2 f (to avoid aliasing issues). From Eq. (1), we note that the optical field at
A(r) is proportional to the Fourier transform of the field both at the sample plane S(r′) and the
image plane D(r′), a feature that distinguishes FPM from CP and lends to its name.

Again applying the thin object approximation, the optical field S(r′) directly past the sample
plane may be written as a multiplication between the incident field and the sample transmission
function ψ as,

S(r′) = ψ(r′)e jkxr′ . (7)

Here, x represents the sine of the angle at which the plane wave generated by the ith LED,

located a distance hi away from the optical axis, travels: x = hi/
√

h2
i + `2, with ` the distance

between the LED array and the sample. As with CP, x is again connected to an illumination shift
distance. Since we here define this shift distance at the illumination plane instead of the sample
plane, x now becomes a variable modifying the sample’s spatial frequency. The optical field
S(r′) continues to propagate to aperture plane A(r), mathematically represented through the
scaled Fourier transform in Eq. (1). The field is attenuated at A(r) by the aperture transmittance
function a(r) (i.e., the shape of the MO pupil plane), creating the optical field,

F
[
S(r′)

]
a(r) = S̃(r)a(r) = ψ̃(r− x)a(r). (8)

Again, we’ve neglected coordinate scaling factors for clarity (see Appendix A). Finally, this at-
tenuated field propagates to image plane D(r′), represented through a scaled Fourier transform.
At D(r′), the digital pixel array detects the field’s intensity mF(x,r′):

mF(x,r′) = |F [ψ̃(r− x)a(r)] |2 (9)

Similar to Eq. (3), the shift variable x in mF(x,r′) now connects each image to the ith illumi-
nation LED angle. Each column of FPM’s data matrix in Eq. (9) contains a 1D image captured
under a unique illumination direction from one of the i ∈ {1, . . . ,n} LEDs in the array. The
simulated FPM data matrix in Fig. 4 is visually quite similar to CP’s, shown in Fig. 2. The only
mathematical difference between the two data matrices, expressed compactly in Eq. (3) and
Eq. (9), is whether the aperture function a or the sample function ψ is Fourier-transformed. To
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Fig. 4. FPM data acquisition diagram. (Top) The same grating sample ψ(r) used in Fig. 2
is sequentially illuminated by tilted plane waves, adding a different linear phase ∝ x to each
image (tilted green line). At plane A(r), the aperture a(r) limits the extent of the field before
the sample is imaged to detector plane D(r′) at low resolution. (Bottom) Corresponding
WDF’s and their convolution, representing FPM’s data matrix. Color maps here follow
those included in Fig. 2.

more explicitly connect CP and FPM, we can expand Eq. (9) into,

mF(x,r′) =
∫∫

ψ̃(r1− x)ψ̃∗(r2− x)a(r1)a∗(r2)exp
(
− jkr′ · (r1− r2)

)
dr1dr2, (10)

A straightforward derivation detailed in Appendix B leads to the more compact representation,

mF(x,r′) =
∫∫

Wψ(−u− x,r)Wã(u,r− r′)dudr. (11)

Here, the functions Wψ and Wã are again the WDF’s of the sample and the Fourier transform of
the aperture, respectively, as included in our phase space model for CP in Eq. (5). However, the
u and r variables within each Wigner function have traded places. Directly comparing Eq. (5)
and Eq. (11) yields the following simple relationship between the data collected by CP and
FPM:

mF(x,r′) = m(r′,−x). (12)

Fourier ptychographic microscopy’s data matrix is simply a rotated version of the data recorded
by a conventional ptychography setup (i.e, trading the r′ and x variables is equivalent to a 90◦

matrix rotation). Detailed steps leading to Eq. (12) are described in Appendix B. Since the
data collected by each procedure is related through an isomorphic transformation, various post-
processing algorithms developed specifically for CP will, in theory, work equally well with
FPM, and vice-versa. Of course, many practical considerations can influence one’s selection be-
tween different optical setups that produce mathematically equivalent data. In the next section,
we will examine how such experimental requirements and practical sampling conditions man-
ifest themselves within our mathematical framework, before deriving a more detailed model
including the effects of partially coherent light.

#199816 - $15.00 USD Received 22 Oct 2013; revised 16 Dec 2013; accepted 17 Dec 2013; published 2 Jan 2014
(C) 2014 OSA 13 January 2014 | Vol. 22,  No. 1 | DOI:10.1364/OE.22.000338 | OPTICS EXPRESS  345



r'!

x!

u!

r!

Image	  i	  

CP!

Detector 
width!

Pixel 
size!

Scan range!

Scan step!

r'!

x!

Image	  i	  

FPM!

Image 
FOV!

LED pitch!

Max. LED angle!

Pixel/
PSF 
size!

Wa (r, u)!

Finite probe (overlap)!

Max. 
spatial 
frequency!

u! Wa (r, u)!

Image 
PSF!

(Max. scan 
range/
accepted kx)!

r!

D
at

a 
m

at
rix
!

Bl
ur

 K
er

ne
l!

m (x,r')	   mF (x,r')	  

Fig. 5. The experimental factors influencing CP and FPM data matrices. (top) Geometrical
factors define the data matrix scaling and sampling, while (bottom) parameters specific to
the focusing/imaging lens define data matrix blurring for both setups.

3. Visualizing connections between both ptychographic domains

The phase space model in Section 2 offers an excellent visualization of the close link between
the data collected by CP and FPM. However, it is not correct to assume the exact linear rela-
tionship in Eq. (12) implies that CP and FPM are always experimentally identical - a number of
system-specific factors may influence each data matrix uniquely. The first goal of this section
is to use our phase space model to visualize how experimental factors impact data collection,
as Fig. 5 outlines. At the same time, ensuring the two setups produce data exactly following
Eq. (12)’s rotation relationship is not particularly challenging. The second goal of the follow-
ing discussion is to identify a set of carefully chosen setup parameters that lead to such an exact
relationship, which we will use in Section 5’s comparison. Most experimental aspects of CP
and FPM fit nicely into one of four categories describing a particular data matrix property:

1. Scaling along the optical axis: For both ptychographic procedures, distances between the
optical source, sample, detector, and the lens focal length will lead to constant scaling varia-
tions along r′ and x in their respective data matrices. Details of these scaling relationships are
presented in Appendix A.

2. Sampling along r′: The digital detector’s sampling conditions for CP and FPM both mani-
fest themselves along their corresponding data matrices’ r′ axis (Fig. 5, green text). For CP, the
detector width must match the aperture’s maximum transmitted spatial frequency. This width
defines the resolution limit of a final reconstructed image. The detector size and distance to-
gether define a geometric NA, which much match the detector pixel size to avoid aliasing [10].
For FPM, sampling along the r′ axis follows a typical imaging setup - the detector width is
paired to the imaging lens FOV, and the detector pixel size matches the imaging optics’ point-
spread function (PSF) width to avoid aliasing.

3. Scanning along x: Sampling along the data matrix x-dimension is tied to the operation of
each setup’s illumination (Fig. 5, blue text). In CP, the probe beam’s total scanning distance sets
the maximum extent along x, which also defines the final reconstructed image’s FOV. In FPM,
however, the maximum extent along x is set by the maximum LED-sample illumination angle.
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This in turn defines the final reconstructed image’s maximum resolution, as opposed to FOV.
This outstanding feature of FPM allows for the extension of a lens’s typical resolution cutoff
by simply illuminating the sample from large off-axis angles. Experimental uncertainty in x-
scanning is also an important consideration. The limited accuracy of CP’s mechanical stage,
caused by inter-experimental variations in movement, restricts CP resolution to approximately
1 µm in optical arrangements [6]. The unknown angular position of FPM’s LEDs may likewise
impact experimental precision, but not accuracy. Unlike CP, a single pre-calibration procedure
can estimate any deviations from known LED array parameters, which can help correct preci-
sion errors in all future measurements of the same fixed FPM setup. This type of pre-calibration
may also be used to remove the effect of aberrations induced by FPM’s imaging lens, which
become especially prominent at high illumination angles [23].

The sampling rate along the x-dimension of both data matrices is set by the number of cap-
tured images. Our above model assumes the WDF is ideally discretized, requiring the number
of detector pixels along r′ to match the number of collected images along x. In practice, accurate
high-resolution sample reconstruction does not require full population of m(x,r′) or mF(x,r′)
along x [21]. Under-sampling along x remains an effective strategy because the WDF is a re-
dundant 2D representation of a complex 1D signal. Phase retrieval algorithms, such as those
used in [1–8], exploit this redundancy to faithfully reconstruct sample and probe functions from
under-sampled data matrices, as also explored in [22]. Strictly speaking, such under-sampling
along x invalidates Eq. (12)’s exact equality. However, the high-resolution solutions for sam-
ples, probes and apertures demonstrated in [1–8] for both CP and FPM can directly gener-
ate fully sampled WDFs. These WDFs can subsequently create fully sampled data matrices
via Eq. (5) and Eq. (11). Thus, any under-sampled data matrix that can faithfully reconstruct
a high-resolution sample also contains enough information to satisfy Eq. (12) after a known
transformation, leading us to conclude that under-sampling, up to a certain threshold, will have
minimal impact on many of our findings.

4. Data matrix blur kernel: CP’s finite probe width causes blurring between images, and the
finite extent of its aperture will typically define the maximum spatial frequency cutoff for each
image. These limiting effects respectfully manifest themselves along the r and u dimensions
of CP’s aperture WDF, Wã(r,u), shown in the bottom of Fig. 5. Convolution with Wã(r,u) in
Eq. (5) describes how sample information is blurred during the detection process. Since it is
zero beyond a certain cutoff value along u, Wã(r,u) removes from the data matrix any sample
information above this associated spatial frequency range. FPM’s rotated blur kernel Wã(u,r)
is defined by its imaging aperture. It also blurs and cutoffs sample information from the data
matrix in a similar manner as CP’s blur kernel, and may additionally contain the effects of
optical aberrations from the imaging lens, as previously noted.

The simulations presented in Fig. 2, Fig. 4 and Section 5 use a fixed set of example setup
parameters to ensure the CP and FPM setups data matrices only vary by a rotation. For CP, we
assume a lens (diameter w = 37.5 mm, focal length f = 105 mm) creates a sinc of estimated
width 18 µm (peak-to-zero) at the sample from an LED located `= 300 mm away. The sample
plane contains a grating with 4 µm minimum feature size that is shifted in 4 µm steps. In Fig.
2 and Fig. 4, the simulated grating is 0.4 mm wide, while in Section 5 it is 1.33 mm wide. We
assume a 4 mm-wide detector containing 4 µm pixels with full factor captures its diffraction
pattern, which approximately requires d = 30 mm, assuming free space propagation. For FPM,
we assume a similar lens (with parameters w = 37.5 mm, do = 300 mm and di = 105 mm)
images the sample onto an identical detector. FPM’s LED array is fixed at a distance l = 100
mm and illuminates the same sample. The array extends across a total distance h = 24 mm
perpendicular to the optical axis, yielding a 240 µm pitch for Fig. 2 and Fig. 4. One important
parameter still missing from the above analysis is the light’s coherence state, connected to the
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active area of each optical source. We will now extend our phase space model to account for
this critical effect.

4. A complete statistical model with partially coherent light

In practice, the illumination sources used by each form of ptychography exhibit a limited spatial
and temporal coherence. The rarity of ideally coherent electron and X-ray sources has led to
the theoretical and experimental examination of coherence effects in CP setups [11, 12]. In
the next two subsections, we will primarily be interested in visible-wavelength CP setups that
might benefit from adopting an LED illumination source. Switching to such a partially coherent
source proved a key enabling technology for FPM, as LEDs offer spatially even illumination
and can be easily arranged into inexpensive two-dimensional arrays.

Here, we use our phase space model to show that in either optical setup, partially coherent
LED illumination does not limit the ability to recover an exact sample amplitude and phase
estimate. We conclude that while partial coherence impacts CP and FPM performance differ-
ently, it remains a mathematical separable expression that can be removed by computational
post-processing. Section 5 applies our model to remove known coherence blur from both CP
and FPM data for the first time, and Section 6 considers future extensions to build upon this
initial demonstration.

4.1. Partially coherent source description

To accurately model experimentally realistic optical sources, we must introduce a statistical
measure of spatial coherence into our phase space descriptions of CP in Eq. (5) and FPM
in Eq. (11). We achieve this by treating the optical source’s emitted field U(r, t) as a tem-
porally stationary stochastic process and examining its correlation across space and time:
〈U(r1, t1)U∗(r2, t2)〉 = Γ̃(r1,r2,τ). Here, Γ̃ is the light’s mutual coherence, τ = t2 − t1 is a
constant time difference, and the expectation value is performed over time. From the Weiner-
Khinchine theorem, the cross-spectral density (CSD) of this stochastic process is defined as
Γ(r1,r2,ω) =

∫
Γ̃(r1,r2,τ)e− jωτ dτ . The spectral density C(r,ω) = Γ(r,r,ω) represents the in-

tensity of light at location r at a certain frequency ω . We will assume our illumination sources
are fully spatially incoherent within their photon-generating area, leading to a CSD function at
source plane I,

ΓI(r1,r2,ω) = γ
2C(r1,ω)δ (r1− r2), (13)

where C represents the geometric shape of the source intensity for each frequency ω (typically
a circ-function in two dimensions), γ is its spatial coherence cross section and δ is a Dirac delta
function. For the remainder of this section, we will drop spectral dependance on ω for simplic-
ity, assuming a notch filter is used in experiment to effectively isolate a narrow spectrum from
the source. Although not detailed here, effects of a spectrally broad (i.e., temporally incoherent)
source are an important consideration and may be included through incoherent superposition of
the following equations. The Van Cittert-Zernike theorem relates Eq. (13)’s CSD of the source
ΓI in to the CSD a distance z away, Γz:

Γz(∆r′) = e
− jkq

2z

∫
C(r)e

jk
z (r∆r′)dr ≈ C̃(r), (14)

where a constant multiplier is neglected for simplicity, ∆r′ = r′1−r′2 and q= r′21 −r′22 . Assuming
(r′21 − r′22 )/λ z << 1 allows us to neglect the phase factor up front. With this assumption, we
arrive at an approximate scaled Fourier relationship between the shape of an incoherent illumi-
nation source, C, and the CSD function Γz at any subsequent plane a large distance z from this
source.
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4.2. CP with partially coherent light

In conventional ptychography, the first distant plane the source’s light interacts with is the
aperture plane A(r′). Here, the light’s CSD function Γ`(r′1−r′2) is given by Eq. (14), with z = `.
The aperture a(r′) then modulates Γ`(r′1− r′2) before the light is focused by the lens to the
sample plane, mathematically expressed by applying a Fourier transform kernel to each spatial
coordinate r′1 and r′2. Multiplying Γ`(r′1− r′2) in Eq. (14) with aperture function a and Fourier
transforming the result leads to an input-output (i.e., source-to-sample plane) CSD relationship
defined by a convolution [24]:

Γ
ã
S(r1,r2) =

∫
C(p)ã(r1− p) ã∗ (r2− p)d p, (15)

where Γã
S is the CSD illuminating the sample plane S and we have used the coordinate variable

replacement p = r′ for notational clarity. We have omitted a constant scaling of p by 1/λ` and
r1 and r2 by 1/λ f , for simplicity. With Eq. (15), we now have a full statistical description of
CP’s focused probe beam illuminating the sample. Our previous representation of the focused
probe beam as a fully coherent field, simply described by ã(r), is no longer valid now that
the source has finite spatial extent. We can update our original expression for the intensity at
the detector m(x,r′) in Eq. (4) to reflect our new partially coherent probe beam with a simple
replacement. Instead of multiplying the sample ψ with coherent probe wave ã, we multiply ψ

with the probe wave CSD in Eq. (15):

m(x,r′) =
∫∫

Γ
ã
S(r1,r2)ψ(r1− x)ψ∗(r2− x)exp

[
− jkr′ · (r1− r2)

]
dr1 dr2. (16)

Plugging Eq. (15) into Eq. (16) and performing several straightforward manipulations (outlined
in Appendix C) produces the following mathematical description of the CP data matrix m(r′,x)
in terms of the aperture’s WDF, the sample’s WDF, and the illumination source’s geometric
shape C:

m(x,r′) =
∫∫∫

C(p)Wψ(r− x,u)Wã(r− p,r′−u)dr dud p, (17)

Partially coherent light alters CP’s data matrix with an additional convolution along the scan
variable x (Fig. 6(a)). The goal of ptychographic data post-processing under partially coherent
illumination is to recover a complex description of the sample Wψ from data matrix m(x,r′) by
deconvolving the effects of both Wã and C. This is identical to the coherent case, but with an
additional (yet still separable) blurring term.

4.3. FPM with partially coherent light

Unlike CP, FPM uses an array of spatially offset and partially coherent LEDs at its illumination
plane. Using x to represent the distance from a given LED to the optical axis, the CSD of one
LED may be expressed by modifying Eq. (13) to incorporate a spatial offset by x: ΓI(r1,r2) =
γ2C(r1 − x)δ (r1 − r2). This LED’s shifted source light first illuminates the sample at plane
S(r′). Again neglecting its quadratic phase and constant scaling terms for simplicity, Eq. (14)
can propagate ΓI(r1,r2) to the sample plane S(r′) to express the CSD at the sample, ΓS:

ΓS(ρ1−ρ2) =
∫

C(r− x)e jkr(ρ1−ρ2)dr = C̃(ρ1−ρ2)exp(− jkx(ρ1−ρ2)), (18)

where (ρ1,ρ2) have replaced (r′1,r
′
2) as the sample’s spatial coordinates at S(r′), for notational

clarity. This illumination light is then modulated (i.e., multiplied) by the sample transmission
function ψ and subsequently imaged onto the detector plane. As in the previous subsection,
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Fig. 6. Partially coherent light manifests itself as an additional convolution along the data
matrix scan dimension x for both (a) CP and (b) FPM. The convolution is one-dimensional,
as indicated by the vertical bar. With matrices rotated by 90◦ with respect to one another,
this convolution will mix the data from each respective setup in a unique manner. For this
simulation, we used the same setup parameters as for Fig. 2 and Fig. 4, but assumed each
illumination source C(x) (i.e., LED) is a rectangle 200 µm in diameter.

the transformation of the CSD from the sample to the detector plane is given by a convolution
of each spatial variable ρ1 and ρ2 with a coherent impulse response [24], here defined by the
Fourier transform of the aperture ã:

ΓD(r′1,r
′
2) =

∫∫
ΓS(ρ1−ρ2)ψ(ρ1)ψ

∗(ρ2)ã(ρ1− r′1)ã
∗(ρ2− r′2)dρ1 dρ2. (19)

ΓD(r′1,r
′
2) is the CSD of partially coherent light at the detector. The imaging system’s coherent

impulse response ã is typically a scaled sinc function. The measured intensity at the detector
is given by evaluating ΓD at one spatial location r′ = r′1 = r′2. This allows us to express FPM’s
measured data as mF(x,r′) = ΓD(r′,r′), where mF(x,r′) is the same data matrix from Section 3.
By substituting Eq. (18) into Eq. (19) and setting r′1 = r′2 = r′ we obtain the following expression
for the recorded image intensity mF(x,r′) as a function of LED offset x and detector position
r′:

mF(x,r′) =
∫∫

C̃(ρ1−ρ2)ψ(ρ1)ψ
∗(ρ2)ã(ρ1− r′)ã∗(ρ2− r′)exp(− jkx(ρ1−ρ2)) dρ1 dρ2.

(20)
Equation (20) resembles our coherent FPM data matrix expression in Eq. (10), but now with an
additional C̃ term accounting for partial coherence effects. As detailed in Appendix D, Eq. (20)
may be rearranged into a final expression in terms of the aperture WDF, sample WDF, and LED
source geometry:

mF(x,r′) =
∫∫∫

C(p)Wψ(p−u− x,r)Wã(u,r− r′)dr dud p. (21)

Comparing Eq. (21) to Eq. (11)’s coherent description of FPM, we see that partial coherence
manifests itself as an additional convolution along the data matrix x-dimension (Fig. 6(b)). Prac-
tically, this indicates each FPM image, captured from a different LED and compiled along x,
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will begin to look increasingly similar with increasingly incoherent illumination. In the limit of
a completely incoherent source, spatial shifting will leave all image features nearly unchanged.
Since this blur remains a separable function, it is still possible to deconvolve the effects of both
C and Wa to obtain an accurate sample estimate Wψ . Comparing Eq. (21) to Eq. (17)’s expres-
sion for partially coherent CP, we find a new primary difference between the two setups: while
partial coherence alters both data matrices along the x dimension (the scan variable), it changes
the underlying structure of each data matrix differently, since each is rotated by 90◦ with re-
spect to the other. Put simply, using a partially coherent source in a CP setup blurs together the
sample’s spatial information within its recorded data matrix. In FPM, using an array of partially
coherent sources blurs the sample’s spatial frequency content, as Fig. 6 clearly depicts.

5. Case study: CP and FPM under partially coherent illumination

To briefly demonstrate the validity of our phase space model, we now attempt to measure and re-
move the effects of partial coherence in example CP and FPM data matrices, both in simulation
and experiment. This exercise allows us to check the accuracy of our final statistical descrip-
tions in Eq. (17) and Eq. (21). In addition, this demonstration also offers the following three
primary insights. First, FPM setups that currently rely upon partially coherent LED arrays may
improve the fidelity of their reconstructions by adopting this coherence removal procedure, as
our tests establish. Second, the only currently demonstrated procedure that accounts for partial
coherence within CP data does so without knowledge of the illumination coherence function,
C(p) [12]. The proposed coherence removal algorithm takes into account a-priori knowledge of
C(p), offering a more robust procedure when an estimate of the illumination source’s shape is
available. Third, our experiment tracks the slow degradation of phase imaging performance as
a function of decreasing source coherence. To the best of our knowledge, it is still not currently
well-understood why phase acquisition is possible yet noisy with low-coherence illumination,
and our findings may generalize to benefit this area of investigation.

For both simulation and experiment, we carefully designed the scaling and distance param-
eters to match those listed at the end of Section 3 for three purposes. First, these optimized
parameters ensure both data matrices m and mF match, after a rotation. Second, the listed pa-
rameters require both setups to use the same lens numerical aperture, detector pixel size and
count, and nearly the same total optical path length, offering as even a comparison as possible.
Third, the parameters correspond closely with previous optical CP [6, 7] and FPM [8] experi-
mental testing platforms. One exception to this close match is the width of the CP’s probe beam
at the sample plane, which is typically allowed to be several times wider than what we simulate
to allow for under-sampling along x by a similar factor.

5.1. Simulation

In our first investigation, we simulate the partially coherent imaging performance of CP and
FPM as a function of LED size. Both systems capture 350 one-dimensional images containing
103 pixels each, which combine to form each data matrix. Note that all figures display the
central 350-pixel area of each captured image to aid in visualization. As in Fig. 2 and Fig.
4, our sample here is a chirped grating with minimum feature size of 4 µm. Unlike previous
simulations, the grating is now 1.33 mm-wide and is of a slightly different structure to match our
experimental sample (see Fig. 7(d)). We first apply a Fresnel-based propagation simulation to
create this grating’s CP and FPM data matrices under partially coherent illumination, as in Fig.
7(a)-(b). We then numerically compute Eq. (17) and Eq. (21) using the same grating function
ψ (including all relevant scaling factors in Appendix A). In doing so, we find agreement up to
an average error of < 1% caused by numerical approximation, which verifies our phase space
formulation.
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Fig. 7. Simulation of partially coherent effects produce blurred (a) CP and (b) FPM data
matrices of an example grating. A Wiener filter can approximately recover the coherent
data matrix for each setup, from which an accurate sample reconstruction is direct. (c)
Reconstruction error as a function of LED diameter (i.e., blur kernel width) increases for
both CP and FPM, although FPM’s error is consistently lower. (d) The chirped grating
sample and its coherent CP data matrix, for comparison.

Given a valid model, we next test if partial coherence effects can be effectively removed from
CP and FPM. Successful digital removal of the blurring effects caused by a finite source shape
C will allow both setups to maintain high-resolution imaging performance using larger, brighter
optical sources (i.e., with higher photon throughput). As a standard benchmark, we apply the
well-known Wiener filter in our deconvolution attempt. Previously used to recover complex
sample data in [9, 10], it has since been replaced by more advanced phase retrieval-based algo-
rithms [12, 18, 19]. However, since the Wiener filter offers mean-squared error (MSE) optimal
filtering performance for a stationary signal [25], it is well-suited for our simple demonstration.

The example blurred CP and FPM data matrix inputs in the left of Fig. 7(a)-(b) assume
quasi-monochromatic illumination from sources with 100 µm-diameter active area (0.11◦ an-
gular extent). The associated Wiener deconvolution outputs are shown directly to the right.
Gaussian noise (normalized variance of 10−3) was added to the data before deconvolution.
Noise variance and source size were assumed as prior knowledge to assure optimal filter per-
formance. Figure 7(c) plots the average root-mean-squared error (RMSE) of recovered data
matrices as a function of source diameter after Wiener deconvolution. Each point in this plot is
an average over 10 experiments with noise variances ranging evenly from 10−2 to 10−4. The
linear process of recovering a sample estimate from its coherent data matrix ensures sample
reconstruction RMSE will follow a similar curve. CP and FPM setups that do not create a fully
sampled data matrix (i.e., that under-sample along x) still benefit from a similar deconvolution
approach. While beyond the scope of this work, we have successfully applied a blind decon-
volution algorithm to under-sampled CP and FPM data matrices to achieve nearly equivalent
coherence removal performance.

Two important trends are worth noting. First, RMSE increases as a function of LED diameter,
but accurate sample recovery is still possible up to quite large-diameter sources. In the tested
setup, an angular source extending up to a 0.5◦ maintained manageable error after deconvolu-
tion (under realistic noise assumptions). Second, it is easier to globally remove the effects of
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Fig. 8. (a) Simulated and (b) experimental FPM data matrices with varying degrees of par-
tially coherent illumination. The experimental sample closely matches the distribution of
ψ(r) in Fig. 7(d). C at top indicates the LED active area diameter used in each experiment.

partial coherence from FPM’s data matrix than from CP’s. This key conclusion is a result of the
direction of features within the data matrix for this particular simulated object. Blurring occurs
along the chirped grating ridges for FPM, while it blurs the ridges together for CP, which is
harder to invert. Since we expect intensities will vary more quickly along a biological sample’s
spatial dimension as opposed to its spatial frequency, the trend of superior FPM performance
should hold for most samples of interest (biological samples tend towards sparse spatial dis-
tributions).

5.2. Experiment

To experimentally verify the findings of the simulation in Fig. 7, we constructed a simplified
FPM setup with an illumination system to scan along one dimension. Experimental parameters
closely match the parameters used in simulation (see Section 3). Our experimental setup ex-
hibits two primary differences from the diagram in Fig. 3. First, a single LED on a motorized
linear stage (Newport ESP301) was used instead of a fixed LED array at illumination plane I
to facilitate easy variation of LED coherence area. This variation was achieved by placing pin-
holes of different diameter (100 µm-1000 µm) directly in front of the active area of a 532 nm
central-wavelength diode. Note that while sufficient for the current experiment, a mechanical
stage setup offers resolutions that are generally inferior to LED array-based FPM, since me-
chanical motion introduces the same inaccuracies limiting CP’s achievable resolution. Second,
an f = 50 mm, w = 50 mm collection lens was inserted 50 mm in front of the LED source to
assure uniform illumination of the sample. We experimentally determined this lens has mini-
mal effect on the coherence area at the detector plane. Our imaging setup used a f = 105 mm,
w = 37.5 mm compound lens (Nikon Micro-Nikkor f/2.8G) positioned do = 300 mm from the
sample that imaged onto a 4.54µm pixel CMOS array (Prosilica-GX 1920).

Figure 8 displays an example set of simulated and experimental data matrices of the same
chirped grating sample in Fig. 7 under three different illumination coherence states. Each data
matrix was compiled by scanning the LED-pinhole unit at 250µm steps across 25 mm, for a
total of 100 samples along x. This sampling rate is approximately 4-5 times higher than prior
demonstrations of FPM [8,26], which is not significant enough to alter any of our experimental
conclusions. At each step along x, we capture an image of the linear grating and select a single
row of the CMOS detector array to form data matrix column x. Each image’s maximum pixel
value is scaled to 1 (i.e., each data matrix column in Fig. 8 is normalized to it’s maximum value),
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which enhances the appearance of noise in low-intensity areas but aids with visualization of
coherence effects. The wiggling effect observable within the experimental data matrix (i.e.,
shifting of the grating image as a function of illumination angle) has two primary causes. First,
shifting at the image plane may occur for samples not in ideal focus, which our detector’s
slight undersampling prevents an exact verification of. Second, the grating’s finite thickness (3
mm) does not accurately match the thin object approximation from Section 2, leading to an
unaccounted for phase modification that manifests itself as this irregular artifact.

Figure 8 highlights three important effects of illumination coherence on FPM’s data. First, the
striped “diffraction cone” within each matrix mF(x,r′) broadens along the x-dimension when
using a larger-diameter source, as the convolution relationship in Eq. (21) predicts. Conceptu-
ally, an increasingly incoherent source will extend the lens’s coherent spatial frequency cutoff
at k·NA to its incoherent spatial frequency cutoff at 2k·NA, hence broadening what is captured
along x. This slight improvement in spatial resolution is also present (although difficult to dis-
cern) within each individual image along the r′-dimension. Second, Eq. (21)’s convolution also
predicts features along x to blur with increased incoherence, which is clearly observed at the
edge of the diffraction cone. As just noted, this blurring does not impact the spatial resolution of
each image, but instead causes images captured by adjacent LEDs to become increasingly sim-
ilar, and thus harder to accurately extract sample phase from. Finally, incoherent illumination
still allows the FPM setup to acquire high-frequency sample information that otherwise would
not be captured by a conventional imaging setup. This is indicated by the dark “tails” at the bot-
tom of each data matrix, which represent high-frequency grating information that is diffracted
into the imaging lens from an off-axis LED, otherwise cutoff from a single image. The density
of this high-frequency information tail decreases with increasingly incoherent illumination.
However, it is still clearly present with a low-coherence source, thus allowing computational
improvement of a reconstructed image’s resolution beyond the conventional imaging lens NA
cutoff. This information-preserving feature of ptychography in the presence of incoherent light
is a very powerful tool that has yet to be studied in full, and is the main conclusion of this
experiment.

6. Conclusion and future work

To briefly summarize, we first derived a linear relationship connecting the data matrices cap-
tured by conventional and Fourier ptychography. We then demonstrated that partial coherence
alters different features of each setup’s data matrix, although effectively blurring both. Simula-
tion and experiment verified the successful removal of such partial coherence artifacts for both
setups, although removal from FPM’s data set is expected to yield lower error for most sparse
biological samples of interest. Besides this ancillary benefit, the FPM setup requires no moving
components, which thus suggests it may be capable of greater stability with respect to CP.

In the future, our derived phase space model may help advance ptychography’s development
with several useful hardware modifications. First, following concepts well-known in linear filter
design, the convolution relationships in Eq. (17) and Eq. (21) indicate that careful modification
of each data matrix blur kernel can greatly reduce sample recovery error. CP’s conventional sinc
probe and FPM’s typical circular aperture both include many transfer function zeros, which are
computationally impossible to invert. Apodization of the probe and aperture with a designed
mask can improve this inversion, offering increased solution stability, independent of recovery
algorithm specifics. Apodization of the incoherent illumination source’s finite shape, C(p), will
also improve removal of partial coherence effects. Second, Eq. (12) suggests that alternative op-
tical setups can capture the data matrix m under different linear transformations (e.g., a matrix
rotation that is not 90◦, or another isomorphic transform besides rotation). These alternatives
to CP and FPM will most likely offer application-specific advantages. For example, one could

#199816 - $15.00 USD Received 22 Oct 2013; revised 16 Dec 2013; accepted 17 Dec 2013; published 2 Jan 2014
(C) 2014 OSA 13 January 2014 | Vol. 22,  No. 1 | DOI:10.1364/OE.22.000338 | OPTICS EXPRESS  354



imagine both shifting the sample across a limited range and using a small number of illumi-
nation sources to increase collection efficiency. This specific joint CP-FPM setup may benefit
applications only tolerating minimal movement, but many other hybrid designs may be easily
imagined to fulfill niche design constraints. Finally, we minimally considered the computa-
tional post-processing aspect of ptychography in our analysis. As recently demonstrated, phase
space offers a rich array of image reconstruction tools [22]. Working within a high-dimensional
space like the WDF’s is required when including partial coherence, so our model will most
immediately impact ptychographic algorithms that must account for the effects of large, high-
throughput sources. Furthermore, our demonstration of a linear mapping between CP and FPM
assures that any future computational developments may jointly benefit both setups. For ex-
ample, we now know FPM can immediately benefit from recent CP algorithms like ePIE [19],
annealing [20], and other procedures accounting for partial coherence [12]. Such sharing be-
tween two previously disconnected research areas is the most immediate impact our phase space
model, which we believe offers a solid foundation for many future insights to expand upon as
ptychography continues to evolve.

Appendix A: Phase space expressions with scaling factors included

Re-working CP’s data matrix to include coordinate scaling reveals two primary effects. First,
propagation from the lens to the sample includes a λ f scaling factor [13], where λ is wave-
length and f the lens focal length. Second, propagation from the sample to the detector includes
a similar scaling factor by λd, with d the detector distance. A scaled version of Eq. (3) is thus,

m(x,r′) = |Fr,r′/λd [ã(r/λ f )ψ(r− x)] |2, (22)

where the subscripts indicate the original and transformed coordinates used within the Fourier
transform exponent. This can be rewritten in integral form as,

m(x,r′) =
∫∫

ã
(

r1

λ f

)
ã∗
(

r2

λ f

)
ψ(r1− x)ψ∗(r2− x)exp

[
− jk

d
r′ · (r1− r2)

]
dr1 dr2 (23)

From here, a scaled Wigner convolution relationship is found as,

m(x,r′) =
∫∫

Wψλ f

(
r− x

λ f
,u
)

Wã

(
r,

λ f
d

r′−u
)

dr du. (24)

where the ψλ f subscript indicates the coordinate system of Wψ is multiplicatively scaled by a
constant λ f factor. Pre-integral multiplicative constants are omitted for clarity. Equation (24)
includes three primary effects of scaling. First is the λ f scaling factor along Wψ ’s spatial vari-
able r, which also necessarily requires the phase space function’s spatial frequency variable u to
be contracted by the same proportion before computing the convolution. Second, the resulting
data matrix’s r′ coordinate is scaled by a λ f/d factor, and third its x coordinate by 1/λ f .

Scaling effects can similarly be incorporated into FPM’s data matrix Eq. (10) as,

mF(x,r′) =
∫∫

ψ̃

(
r1

λdo
− x

λ

)
ψ̃
∗
(

r2

λdo
− x

λ

)
a(r1)a∗(r2)exp

(
− jkr′

λdi
· (r1− r2)

)
dr1dr2.

(25)
Here, do is the distance from the sample to the lens and di is the distance from the lens to the
detector (Fig. 3). Straightforward manipulations following Appendix B’s steps lead to,

mF(x,r′) =
∫∫

Wψλdo
(−u−dox,r)Wã

(
u,r− λdor′

di

)
dudr. (26)
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where ψλdo here indicates Wψ is fully scaled by a constant factor 1/λdo. Again, three main
differences are apparent comparing the above to the FPM convolution expression in Eq. (11):
r′ is scaled by λdo/di, x is scaled by do, and Wψ ’s joint coordinates are scaled by 1/λdo before
convolution. Similar manipulations yield scaling factors for data matrices containing the effects
of partially coherent illumination.

Appendix B: The Wigner representation of the FPM data matrix

Our goal in this derivation is to transform Eq. (10) into an expression separable in ψ and ã,
for direct comparison with Eq. (5). This can be achieved by taking advantage of the Wigner
distribution function (WDF). As noted in Section 2, the WDF is a convenient tool to achieve
variable separation. The WDFs describing ψ and a are obtained by first transforming (r1, r2) to
center-difference coordinates (r,y), using r1 = r+ y/2 and r2 = r− y/2:

mF(x,r′) =
∫∫

ψ̃

(
r+

y
2
− x
)

ψ̃
∗
(

r− y
2
− x
)

a
(

r+
y
2

)
a∗
(

r− y
2

)
× exp

(
− jkr′ · y

)
dydr,

(27)

where in the exponent we use the fact that r1− r2 = y. Following the definition of the WDF in
Eq. (6), we can define the WDF of the Fourier transform of our sample function ψ̃ as,

Wψ̃(r,u) =
∫

ψ̃

(
r+

y
2

)
ψ̃
∗
(

r− y
2

)
exp(− jkyu)dy. (28)

Applying an inverse Fourier transform to both sides of Eq. (28) yields,

ψ̃

(
r+

y
2

)
ψ̃
∗
(

r− y
2

)
=

k
2π

∫
Wψ̃(r,u)exp( jkyu)du (29)

The Wigner distribution of the aperture function a(r), Wa(r,u), will take a similar form as
Eq. (28). As we will see next, it is more useful to express the WDF of the aperture with a
shifted spatial frequency term, Wa(r,r′−u):

Wa(r,r′−u) =
∫

a
(

r+
y
2

)
a∗
(

r− y
2

)
exp
(
− jky(r′−u)

)
dy (30)

The inverse Fourier transform of Eq. (30) yields,

a
(

r+
y
2

)
a∗
(

r− y
2

)
=

k
2π

∫
Wa(r,r′−u)exp

(
jky(r′−u)

)
d(r′−u) (31)

Inserting Eq. (29) and Eq. (31) into Eq. (27) and noting all terms in the exponent cancel pro-
duces a near-final FPM data matrix expression:

mF(x,r′) =
∫∫

Wψ̃(r− x,u)Wa(r,r′−u)dr du, (32)

where the pre-integral multiplier is omitted for clarity. To fully connect FPM’s data matrix with
CP’s in Eq. (5), we can take advantage of a convenient property of the Wigner distribution. As
a function of both space and spatial frequency, it is clear that Wψ(r,u) must contain the same
information as when it is applied to the sample’s Fourier transform, Wψ̃(r,u). The two Wigner
functions are connected by,

Wψ̃(r,u) =Wψ(−u,r). (33)

The Wigner distribution of the sample’s Fourier transform ψ̃ is given by the Wigner distribution
of the sample ψ in Eq. (28) but rotated 90◦ [15]. Applying this property to both WDFs in
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Eq. (32), without swapping the dummy convolution variables, produces an expression directly
comparable with CP’s Eq. (5):

mF(x,r′) =
∫∫

Wψ(−u− x,r)Wã(u,r− r′)dudr, (34)

which is in Eq. (11). Two manipulations applied to Eq. (34) lead to the 90◦ rotation relationship
between the CP and FPM data matrices in Eq. (12). First, both the data matrix on the left of
Eq. (34) and the two Wigner functions on the right of Eq. (34) must be rotated by swapping
the order of their variables (i.e., mF(x,r′) becomes mF(r′,x)). Second, the dummy integration
variables x and r′ must switch from one Wigner function to the other (i.e., x goes to Wã and r′

goes to Wψ ). Comparing the result of these operations with Eq. (5) leads to Eq. (12)’s linear
transform.

Appendix C: Conventional ptychography with partially coherent source, derivation

The influence of partially coherent light on conventional ptychography is derived by first in-
serting the CSD function of light at the sample plane (Eq. (15)) into our data matrix m(x,r′) in
Eq. (16) to produce,

m(x,r′) =
∫∫∫

C(p)ã(r1− p) ã∗ (r2− p)ψ(r1− x)ψ∗(r2− x)

× exp
[
− jkr′ · (r1− r2)

]
dr1 dr2 d p.

(35)

Next, we perform the variable substitution r1 = r+ y/2 and r2 = r− y/2 to create,

m(x,r′) =
∫∫∫

C(p)ã
(

r+
y
2
− p
)

ã∗
(

r− y
2
− p
)

ψ

(
r+

y
2
− x
)

ψ
∗
(

r− y
2
− x
)

× exp
[
− jkr′y

]
dydr d p.

(36)

Following the same steps as Eq. (28) - Eq. (29), we may replace the ψ
(
r+ y

2 − x
)

ψ∗
(
r− y

2 − x
)

term with its WDF to yield,

m(x,r′) =
k

2π

∫∫∫∫
C(p)ã

(
r+

y
2
− p
)

ã∗
(

r− y
2
− p
)

Wψ(r− x,u)

× exp
[

jky · (u− r′)
]

dydr d pdu
(37)

Likewise, a similar WDF relationship may be constructed for the aperture:

ã
(

r+
y
2
− p
)

ã∗
(

r− y
2
− p
)
=

k
2π

∫
Wã(r− p,r′−u)exp

(
jky(r′−u)

)
d(r′−u) (38)

Inserting Eq. (38) into Eq. (37) and neglecting constant multipliers leads to,

m(x,r′) =
∫∫∫∫

C(p)Wã(r− p,r′−u)Wψ(r− x,u)

× exp
(

jky(u− r′+ r′−u)
)

dydr d pdud(r′−u).
(39)

Noting all terms in the exponent cancel and the dy and d(−r′−u) integrals drop to leave,

m(x,r′) =
∫∫∫

C(p)Wã(r− p,r′−u)Wψ(r− x,u)dr dud p, (40)

the final expression in Eq. (17). The finite extent of the incoherent source C(p) alters our orig-
inal expression for CP’s data matrix through a convolution along the x-dimension of the data
matrix, similar to FPM as derived in Appendix D.
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Appendix D: FPM with partially coherent sources, derivation

Here, we would like to express Eq. (20) as a convolution between three unique functions rep-
resenting the source, sample and aperture, respectively. Separating their effects will allow for
direction comparison with the partially coherent CP expression in Eq. (17), and will also help
us understand how partial coherence alters FPM’s data matrix. First, inserting the Fourier trans-
form integral C̃(ρ1−ρ2) =

∫
C(p)exp(− jkp(ρ1−ρ2)) d p into Eq. (20) leads to,

mF(r′,x) =
∫∫∫

C(p)ψ(ρ1)ψ
∗(ρ2)ã(ρ1− r′)ã∗(ρ2− r′)

× exp(− jk(x+ p)(ρ1−ρ2)) dρ1 dρ2 d p.
(41)

Then, we can make a variable substitution t = x+ p to create,

mF(r′,x) =
∫∫∫

C(t− x)ψ(ρ1)ψ
∗(ρ2)ã(ρ1− r′)ã∗(ρ2− r′)

× exp(− jkt(ρ1−ρ2)) dρ1 dρ2 dt
(42)

As above, we first make the variable substitution ρ1 = r+ y/2 and ρ2 = r− y/2:

mF(r′,x) =
∫∫∫

C(t− x)ψ
(

r+
y
2

)
ψ
∗
(

r− y
2

)
ã
(

r+
y
2
− r′
)

ã∗
(

r− y
2
− r′
)

× exp(− jkty) dr dydt,
(43)

Then, substituting the following Wigner distributions,

ã
(

r+
y
2
− r′
)

ã∗
(

r− y
2
− r′
)
=

k
2π

∫
Wã(r− r′,u)exp( jkyu) du (44)

ψ

(
r+

y
2

)
ψ
∗
(

r− y
2

)
=

k
2π

∫
Wψ(r, t−u)exp( jky(t−u)) d(t−u) (45)

into our expression for intensity at the detector and noting all exponential terms cancel (similar
to what is shown in Eq. (39)) yields,

mF(r′,x) =
∫∫∫

C(t− x)Wψ(r, t−u)Wã(r− r′,u)dr dt du. (46)

To convert this into a form directly comparable to both CP and FPM under coherent illumina-
tion, we first remove t from Eq. (46) using the relationship t− x = p. Second, we note that the
position of the x and r′ variables are along opposite dimensions of Wψ and Wã as compared with
our previous data matrix expression in Eq. (11). Swapping the order of variables on both sides
of Eq. (46) produces,

mF(x,r′) =
∫∫∫

C(p)Wψ(x+ p−u,r)Wã(u,r− r′)dudr d p, (47)

which is directly comparable to Eq. (11). Now, partial coherence effects are included with a con-
volution with source shape C along the data matrix x dimension. Comparing the above equation
to Eq. (17) reveals that although C blurs both data matrices along x, the WDFs describing each
are rotated by 90◦ with respect to the other, leading partial coherence to mix together the data
captured by CP and FPM in a different fashion.
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