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Optical focusing inside scattering media
with time-reversed ultrasound microbubble
encoded light
Haowen Ruan1,*, Mooseok Jang1,* & Changhuei Yang1

Focusing light inside scattering media in a freely addressable fashion is challenging, as the

wavefront of the scattered light is highly disordered. Recently developed ultrasound-guided

wavefront shaping methods are addressing this challenge, albeit with relatively low

modulation efficiency and resolution limitations. In this paper, we present a new technique,

time-reversed ultrasound microbubble encoded (TRUME) optical focusing, which can focus

light with improved efficiency and sub-ultrasound wavelength resolution. This method

ultrasonically destroys microbubbles, and measures the wavefront change to compute and

render a suitable time-reversed wavefront solution for focusing. We demonstrate that the

TRUME technique can create an optical focus at the site of bubble destruction with a size of

B2mm. We further demonstrate a twofold enhancement in addressable focus resolution in a

microbubble aggregate target by exploiting the nonlinear pressure-to-destruction response of

the microbubbles. The reported technique provides a deep tissue-focusing solution with high

efficiency, resolution, and specificity.
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C
reating an optical focus inside a scattering medium such as
biological tissue has great potential in various applications.
However, optical scattering, a dominant light–matter

interaction within biological tissue, poses a very significant
challenge. Recent developed wavefront shaping techniques have
begun to address this1–5 by exploiting the deterministic and time-
symmetric nature of scattering. Focusing light through scattering
media has been realized by iterative optimization methods2,6,
optical phase conjugation (OPC)7–12, and direct measurement of
the transmission matrix at large scale13–15.

Determining the correct wavefront to focus light from outside of
a scattering medium to a point within requires a feedback or tagging
mechanism. Typically, these mechanisms arise from a localized
‘guidestar’ point. Examples of guidestars include second harmonic
generation16, fluorescence17,18 and kinetic19,20 targets. While
individual guidestars enable light shaped to focus to their physical
location, these techniques fundamentally lack addressability if dense
and randomly distributed sets of guidestars are present.

Alternatively, ultrasound-assisted techniques, such as photoacous-
tic-guided15,21–23 and time-reversed ultrasonically encoded
(TRUE)24–27 optical focusing techniques, employ a focused
ultrasound beam as a ‘virtual guidestar’. Unlike the above
techniques, it is easy to move or scan an ultrasound focus to new
positions. While TRUE has a speed advantage over the
photoacoustic approach, the TRUE guidestar is generally weak
and typically o1% of the probe light field that passes through the
ultrasound focus is tagged28,29. Moreover, the resolution achieved is
limited by the ultrasound focus size. Although more advanced
TRUE techniques, such as iterative TRUE30–32 and time reversal of
variance-encoded light33, may break this resolution barrier, it comes
at the expense of time. For practical biological applications with tight
time constraints, efficient and fast techniques are highly desired.

Here we present a high resolution, deep tissue optical focusing
technique termed time-reversed ultrasound microbubble encoded
(TRUME) optical focusing. Microbubbles have been widely used
in ultrasonic imaging as ultrasound contrast agents because they
generate stronger echoes and nonlinear acoustic signals compared
with surrounding tissue34,35. Several other advantages of
microbubbles are their small size compared with typical
ultrasound wavelengths, which enables acoustic super-resolution
imaging36–38 and their ability to enable ultrasound modulated
optical imaging inside scattering media39–41. Furthermore, like
fluorescent markers, microbubbles can be modified to bind to
selected biomarkers, suggesting promise for functional imaging
and therapeutic applications34.

We demonstrate that the selective nonlinear destruction of
microbubbles with a focused ultrasound beam can serve as effective,
highly localized and freely addressable guidestar mechanism. In
brief, TRUME works by measuring the scattered optical field before
and after the ultrasonic destruction of the microbubble. Subse-
quently, by playing back the phase conjugate version of the
difference of these two fields, TRUME can generate a focus at the
location of the destroyed microbubble. Although multiple foci could
be created at the same time when multiple microbubbles are present
within the original ultrasound focus, we show that careful selection
of the ultrasound pressure can lead to destruction of microbubbles in
an addressable volume that is smaller than the ultrasound focus.
This is a result of the nonlinear pressure-to-destruction response
curve associated with the microbubbles. This technique combines
the advantages of both physical and virtual guidestars to provide
efficient, fast and addressable deep tissue optical focusing.

Results
Principles. Our TRUME set-up uses a digital OPC (DOPC)
system as its wavefront recording and playback engine8,31

(Fig. 1a). In the recording phase, the scattered field from the
sample is recorded by the camera of the DOPC system. In the
playback step, a phase-conjugated version of the recorded phase
is displayed on the spatial light modulator (SLM) and a
collimated ‘blank’ beam is modulated to form the playback
light field. Precise alignment of the camera and SLM allows
high fidelity phase conjugate playback of the record field.
Experimentally, this DOPC system is able to control B105

optical modes simultaneously42.
Here we demonstrate TRUME in transmission geometry

(Fig. 1a), in which a sample beam transmits through the sample
in the z direction and part of the scattered light is measured by
the camera on the other side of the sample. An ultrasound beam
is focused on the microbubbles embedded between two diffusers
through water coupling. TRUME operates in three steps. First, an
optical field (Field A) is measured by the camera (Fig. 1b) with
phase shifting digital holography43. Second (Fig. 1c), ultrasound
is applied to destroy the targeted microbubble, immediately
followed by the measurement of a second optical field (Field B).
The difference of the fields (Fields A–B) is the scattered field
solution associated with the microbubble. The DOPC system
computes this difference field and plays back a phase
conjugate copy. Since the difference field primarily contains
only information from the microbubble, the conjugated beam
focuses to the position of the destroyed microbubble (Fig. 1d).

TRUME shares the same mathematical framework as guidestar
techniques using kinetic objects19,20. The optical field on the
target plane Et can be decomposed into a microbubble diffracted
field Em and a background field Eb, which describes the field after
microbubble destruction: Et¼EmþEb. Since the camera and
SLM contain discrete components, it is convenient to discretize
Em and Eb as column vectors with n complex elements, with each
element mapping to an optical mode on the two-dimensional
target plane. We may then connect this target field to the field on
the measurement plane E0

t through a matrix equation:
E0
t ¼TEt¼T(EmþEb). Here T is an m� n matrix describing

the scattering medium and E0
t is a column vector of m elements,

with each element mapping to an optical mode on the two-
dimensional measurement plane. Similarly, the field measured
after microbubble destruction can be given by E0

b ¼TEb. The
difference field on the measurement plane is thus,

E0
d¼E0

t �E0
b

¼T Em þEbð Þ�TEb

¼TEm:

ð1Þ

Here subtraction effectively removes the impact of the
background field on the measurement plane, resulting in a field
that appears to be scattered from the microbubbles only. Finally,
we playback the conjugated field E0�

d with an optical gain a
provided by the playback beam (Fig. 1a). Assuming time-reversal
symmetry, we may express playback as a multiplication with T
from the left with the conjugate transpose of the difference field.
Therefore, the playback field Ep on the target plane takes the
form:

Ep ¼ aE0�
d T ¼ a TEmð Þ�T

¼ aE�
mT

�T � abE�
m:

ð2Þ

Here we assume minimal absorption within the sample to apply
the approximation T�TEbI, in which b is the fraction of
scattered light field that is measured in the DOPC system and I is
an identity matrix. The playback light effectively cancels out the
random transmission matrix to refocus at the location of
microbubble destruction.

The TRUME technique relies on a novel guidestar mechanism,
popping a gas-filled microbubble using ultrasound, to generate
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the optical field difference. This mechanism leverages both the
optical and acoustic refractive index mismatch between gas and
liquid to accomplish efficient conversion of acoustic signal to
optical signal. Given the fact that microbubbles have excellent
biocompatibility, this guidestar combines its advantages in optics,
acoustics and biology to provide a solution for focusing light
inside biological tissue.

Visualization and efficiency characterization of the focus. To
validate TRUME focusing, we directly visualized the target plane

using a � 10 microscope system (see Methods section) before
and after the TRUME procedure. In this experiment, we shifted
the front diffuser along the x direction (to the ‘open position’ in
Fig. 2a) for direct imaging of the target plane during the focusing
phase. The target sample here is composed of microbubbles
embedded in agarose gel within an acrylic capillary tube (see
Methods section) as shown in Fig. 2b. Immediately after mea-
suring the first optical field, a 20-MHz focused ultrasound beam
was used to destroy one microbubble, followed by the measure-
ment of the second field. We then imaged the target plane again
to confirm the destruction of the microbubble (Fig. 2c) and
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Figure 2 | Visualization of the target plane. (a) Illustration of the observation set-up. The front diffuser was shifted to the open position before and after

TRUME for direct visualization. A � 10 microscope system was used to observe the target plane. (b,c) Images of a microbubble before and after applying

ultrasound. (d) Optical focus created at the position of microbubble destruction. (e) Focusing results of TRUE technique. Scale bar, 10mm.
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Figure 1 | Principle of TRUME technique. (a) Illustration of the experimental set-up (see Supplementary Figs 1 and 2 for schematic diagram in detail). The

microbubbles perfuse inside an acrylic tube, which is sandwiched between two diffusers. A DOPC system is used as a phase conjugation mirror to time-

reverse the light back to the sample. (b–d) Illustration of TRUME optical focusing technique in three steps. At the first step, the camera of the DOPC

system captures a transmitted optical field (Field A) before applying ultrasound to the sample (b). Ultrasound bursts are then used to destroy the targeted

microbubble (c), resulting in a different optical field (Field B). The difference between two fields yields an optical field that appears to emerge from the

destroyed microbubble. The conjugated phase of the difference field is then sent to the SLM to create a playback beam, which focuses light at the position

of microbubble destruction (d). Yellow arrows, numbers and signal flows indicate recording process; green ones represent playback.
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directly visualized the focus created at the position of destroyed
microbubble (Fig. 2d). The measured peak intensity to back-
ground intensity ratio (PBR) of the TRUME focus in Fig. 2d is
B510 (Supplementary Methods).

For comparison, we also measured the focusing profile of
TRUE (Fig. 2e and Supplementary Methods). The PBR of the
TRUME focus is around two orders of magnitude higher than
that of TRUE (PBR¼B2 in Fig. 2e), since the TRUME
concentrates light at fewer optical modes and has a stronger
modulation efficiency per mode.

We separately measured the modulation efficiency of ultra-
sound in a clear medium (Supplementary Fig. 3 and
Supplementary Methods), and found that B0.5% of light passing
through the ultrasound focus (2MPa peak pressure) is modu-
lated. In comparison, the proportion of light passing through the
location of the bubble that is modulated by bubble destruction
reaches B25% (Supplementary Fig. 3). This large difference in
modulation efficiency is the primary reason why the TRUME
guidestar offers a stronger focus.

Deep tissue optical focusing. To study the performance of
TRUME for focusing through biological tissue, we used two
pieces of 2-mm-thick biological tissue as our diffusive medium
(see Methods section). The experimental set-up matches that
shown in Fig. 2a. The images of the microbubble before and after
destruction are shown in Fig. 3a,b. We directly observed the
target plane (Fig. 3c–e) after the TRUME process. An optical
focus (Fig. 3c,e) was created using TRUME, with PBR of B23
(Supplementary Methods). Fitted Gaussian profiles (to the one-
dimensional data through the centre of the focus in the x and y
directions) show the focus full width at half maximum (FWHM;
Fig. 3e) is 2.4±0.2 mm in the x direction and 1.7±0.2 mm in the y
direction (95% confidence bounds). To confirm that this optical
focus was created due to OPC, we shifted the SLM phase pattern
in both x and y directions by 10 pixels. As shown in Fig. 3d, the
optical focus vanishes as expected. The optical fields measured
before and after microbubble destruction, as well as the sub-
tracted field, are shown in Fig. 3f–h, respectively.

Demonstration of flow stream monitoring. One application of
the TRUME focusing technique may be to perform cytometry
behind a scattering media by using microbubbles, which are
currently used as contrast agents in blood circulation ultrasound
imaging34. To demonstrate this potential application (Fig. 4a), we

mixed fluorescent microspheres (4 mm) and microbubbles in 1X
phosphate buffered saline and pumped the solution through an
acrylic tube (see Methods section). We first formed an optical
focus, as shown in Fig. 4b, by implementing the TRUME
technique to focus on a microbubble at the target location.
Fluorophores that subsequently flow across the focus then
interact with the focused light spot to emit fluorescence. The
fluorescence was filtered with an emission filter and detected by a
single-photon-counting module outside the scattering medium
(see Methods section). The resulting signal is shown in Fig. 4c.
After counting, the front diffuser was shifted to the open position
and the fluorescent microspheres were imaged with an emission
filter for verification (Fig. 4d). The agreement of the results
positively validates this proof-of-concept.

Addressable focus resolution improvement. Our demonstra-
tions of TRUME thus far destroy an isolated microbubble with a
relatively large ultrasound focus (one to two orders of magnitude
larger), forming one sharp optical focus. If multiple microbubbles
are clustered together, then the ultrasound focus may destroy
more than one bubble. In this scenario, TRUME will generate an
optical ‘focus’ significantly broader than the focus we have dis-
cussed thus far. To distinguish the two focus types, we will use the
term addressable focus to refer to the achievable TRUME focus in
the scenario where microbubbles are dense.

The addressable focus size is statistically determined by the
pressure-to-destruction response of the bubbles. Interestingly, the
probability of microbubble destruction varies nonlinearly as a
function of pressure. In the ideal case where all microbubbles
have the same destruction threshold, one can set the peak
ultrasound pressure to be right at the threshold so that only the
microbubble at the centre of the ultrasound focus will be
destroyed and therefore obtain an addressable focus size that is
equal to the single bubble TRUME focus size. In practice,
however, the actual pressure-to-destruction response curve is not
a simple step function. Nevertheless, the more nonlinear the
response curve is, the sharper addressable focus we can achieve
with TRUME.

To better characterize the pressure-to-destruction response and
determine the TRUME addressable focus resolution achievable
with our system, we experimentally measured the cumulative
distribution function of the microbubble destruction s(P) by
counting the number of microbubbles destroyed as a function of
pressure (Supplementary Fig. 4 and Supplementary Methods). As
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Figure 3 | Optical focusing in 2-mm-deep chicken tissue. Two pieces of 2-mm-thick chicken tissues were used as diffusers. (a) A microbubble in a tube

before destruction. (b) After destruction. (c) A light focus was created at the position of the destroyed microbubble (PBR B23). (d) The optical focus

vanished as the SLM shifts 10 pixels in both x and y directions. (e) 10X zoom-in image of the optical focus with quantified resolution. (f,g) Central part (200

pixels by 200 pixels) of the optical fields captured before (f) and after (g) the destruction of the microbubble. (h) Difference of the fields in f,g. Scale bar,

10mm.
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shown in Fig. 5a (red), the cumulative distribution function
reveals a strong nonlinear relationship between destruction
probability and pressure. Given a focused ultrasound profile
P(x) (Fig. 5a, green; see also Methods section), we were able to
calculate the microbubble destruction probability over position
s(P(x)) (Fig. 5a, blue), which predicts the addressable focus
resolution of TRUME. The resulting profile is significantly

narrower than the ultrasound pressure profile, implying that
the nonlinear relationship would effectively improve the addres-
sable focus resolution of TRUME.

To experimentally confirm the improvement of addressable
focus resolution of TRUME, we used a thin microbubble sheet
(see Methods section) to visualize the distribution of the foci as
ultrasound pressure increases. To cover the entire ultrasound
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focus (� 6 dB) with the current observation system and further
improve the resolution, we used a 45-MHz, high numeric-
aperture ultrasound beam with a measured beam diameter of
B40mm and focal zone of B270 mm (� 6 dB; see Methods
section) in this experiment (see Supplementary Fig. 5 for the
experimental results using 20MHz ultrasound). We applied 15
levels of ultrasound pressure (linearly from 1.7 to 8.7MPa) to the
sample and measured the fields before and after each insonation.
We then played back the corresponding field difference
sequentially, recorded the resulting focus patterns
(Supplementary Fig. 6), and applied a watershed algorithm to
extract each focus centroid (see Methods section). To collect
meaningful statistics, this process was repeated 135 times at
different unaffected regions of the microbubble sheet. We
aggregated the measured TRUME focus centroids into a statistical
map as shown in Fig. 5b, where foci are displayed in three
pressure groups. The profile of the foci broadens as the
ultrasound pressure becomes higher, confirming the nonlinearity
effect in TRUME.

To quantify the addressable focus resolution improvement, we
calculated the FWHM of Gaussian profiles that are fitted to the
histograms of each statistical map along both lateral (x) and axial
(y) directions. Figure 5c shows the Gaussian fits and histograms
of the lower pressure group (o2.2MPa, Fig. 5b, left) where
microbubbles start to collapse. We also measured the ultrasound
pressure profiles, which closely match with their theoretical
profiles in both directions (see Methods section). The FWHM of
the Gaussian fit to the centroid histogram in the lateral (x)
direction is 19 mm, while that of theoretical ultrasound focus is
40 mm. Likewise, the FWHM of the TRUME addressable focus
along the axial (y) direction is 130 mm, which is also lower than
that of the ultrasound focus (270 mm). We further studied the
effect of ultrasound pressure on the nonlinearity-induced
resolution improvement by calculating the FWHMs of the
Gaussian fits of both the theoretical microbubble destruction
distribution (for example, blue curve in Fig. 5a) and TRUME
focus histogram profiles (for example, blue curve in Fig. 5c) at
various pressure levels. As shown in Fig. 5d, both experimental
and theoretical FWHMs are lower than that defined by the
ultrasound focus (green line) when the ultrasound pressure is
oB5MPa. The discrepancy between these two curves is
attributable to variations between the samples.

Discussion
Combining the advantages of a physical and a virtual guidestar,
TRUME can selectively focus light to a size of B2mm in deep
tissue, given the distribution of microbubbles it targets is
sufficiently sparse. When the microbubble distribution is dense,
we show that TRUME may still achieve an addressable focus
resolution B2 times higher than that defined by its ultrasound
focus. As this method simply requires two measurements and no
iterations, it is intrinsically fast and a good match with in vivo
applications. Next, we list several factors that affect TRUME
performance and outline several of its potential applications.

The size of an individual focus depends on that of the
microbubble that is typically at micrometre scale, approximately
tenfold smaller than a TRUE focus. Although ultrasound focus
could cover multiple microbubbles, TRUME further confines the
targeting range by taking the advantage of the nonlinear
relationship between microbubble destruction probability and
ultrasound pressure. The addressable focus resolution improve-
ment was largely limited by the broad size distribution of the
microbubbles, and thus can be enhanced by reducing the
standard deviation of the radius of microbubbles, via separation
techniques44 or methods based on established protocols45,46.

Alternatively, simultaneously focusing to multiple microbubble
locations might also be a desired experimental goal, like when
using microbubbles as selective markers (for example, binding to
certain disease markers)34.

The PBR of TRUME is measured to be two orders of
magnitude greater than that of TRUE (B510 versus B2, using
a ground glass diffuser sample and the set-up in Fig. 2). Two
factors lead to this large PBR increase. First, TRUME practically
encodes significantly fewer optical modes, even if multiple
microbubbles are present within the ultrasound focus. Second,
the modulation efficiency of TRUME is much higher than TRUE.
In our experiment, we found B25% modulation of the light
passing through the TRUME guidestar. In comparison, a TRUE
guidestar with a peak pressure of 2MPa only modulates B0.5%
of its contained light.

The time needed to destroy a microbubble depends on the
mechanisms of microbubble destruction, which can be classified
into fragmentation and diffusion47. Fragmentation occurs when
ultrasound pressure is relatively high and the microbubble is
destroyed on a timescale of microseconds, which suggests the
TRUME mechanism is likely applicable to in vivo tissue
experiments. In the case where low ultrasound pressure is used,
acoustic driven diffusion is the dominant destruction mechanism.
This process typically spans tens of microseconds, depending on
both the ultrasound parameters (pressure, frequency, cycles and
so on) and microbubbles properties (size, shell material and
encapsulated gas)47. In this paper, the ultrasound pulse duration
was 28.6ms (one camera frame period), within which incomplete
gas dissolution was also observed under certain circumstances,
such as with low ultrasound pressure and a large microbubble
diameter (Supplementary Movies 1–3). This effect results in a size
decrease rather than complete disappearance of the microbubble.
Intriguingly, decreasing the size of the microbubble between
capturing two optical fields also enables TRUME to form an
optical focus at the targeted microbubble (Supplementary Fig. 7
and Supplementary Note 1), because it shares the same effect as
the complete microbubble destruction—inducing difference
between two optical fields.

It should be noted that the lifetime of a TRUME focus depends
on the tissue decorrelation time. To achieve a longer focusing
duration, one may need to use the incomplete destruction
approach. In this case, the TRUME focus can be repeatedly
created by decreasing the size of the microbubble each time until
complete destruction. Alternatively it is also possible to
dynamically maintain the optical focus by using the ultrasound-
driven microbubble oscillation effect48, which is also able to
induce optical field variation.

Taking advantage of parallel field measurement, this DOPC-
based technique creates optical foci in hundreds of milliseconds
(B280ms in our experiments), a timescale short enough for
ex vivo or even some in vivo biological applications with
appropriate tissue immobilization methods49. It should be
noted that no frame averaging was needed for any of our
TRUME experiments. Like other field subtraction approaches, the
background fields need to remain highly correlated as the light
intensity fraction encoded by the microbubble is typically very
small. This requirement suggests that we must capture the two
fields in a sufficiently short time period to overcome in vivo tissue
decorrelation given that microbubbles can induce field variation
during this time interval. Technically, this can be achieved by
using a high speed camera. Off-axis holography-based field
measurement or binary phase measurement would further
improve the system speed by reducing the number of frames
needed for field measurement11,50.

Microbubbles are usually made with albumin or lipid, which
stabilizes high molecular weight gases, such as perflutren.
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Microbubbles like these have been widely used as ultrasound
contrast agents and proven for some applications in the human
body. Their biocompatibility makes them a promising optical
guidestar in biological tissue. Besides ultrasonic imaging, micro-
bubbles also have promising applications in gene and drug
delivery51, where their ultrasonic destruction can release a
therapeutic payload. Furthermore, microbubbles can also be
targeted to regions of disease by surface conjugation of specific
ligands or antibodies, which bind to the disease markers34.
Recently, genetically encoded gas nanostructures from
microorganisms have been demonstrated as a promising
candidate as molecular reporters52. All these applications imply
that microbubbles have high specificity and selectivity, with
which TRUME focusing may provide precise optical mediation
for drugs, cells or molecules. Example applications range from
selective photo-thermal therapy for targeting tumour cells53,54 to
specific light delivery in optogenetics55.

The prospect of using TRUME to perform imaging is less
obvious and deserves some elaboration. Like other physical
guidestar assisted wavefront shaping techniques, the TRUME
focus position is collocated with the physical guidestar location
and cannot be freely repositioned to perform raster scans.
TRUME may potentially be combined with a newly described
optical memory effect56 to perform scanning and imaging.
Specifically, it has been demonstrated that lateral translation of
the input optical wavefront can retain some of its focusing ability
through scattering media with high scattering anisotropy.
TRUME can potentially be used to generate the initial focus
that can then be freely scanned within a small proximal region
using this optical memory effect.

Methods
Set-up. The TRUME experiment was carried out in a custom-built set-up. The
schematic diagram of the set-up is illustrated in Supplementary Fig. 1. A pulsed
laser beam (532 nm wavelength, 7 ns pulse width, 20 kHz repetition rate and 7mm
coherent length) generated from a Q-switch laser (Navigator, Spectra-Physics) was
spilt into three beams: a sample beam, a reference beam and a playback beam. Both
of the sample beam and the reference beam were shifted by 50MHz using an
acousto-optical modulator (AFM-502-A1, IntraAction). The interference between
the transmitted sample beam and reference beam was measured by the camera
(PCO.edge, PCO) of the DOPC system. The playback beam was modulated with
the conjugated phase of the subtracted field by an SLM (Pluto, Holoeye), which was
precisely aligned to the camera through a beam splitter.

The 20-MHz ultrasound burst was generated by a transducer with a 12.7-mm
focal length and 6.35mm element diameter (V317, Olympus), and the 45-MHz
ultrasound burst was generated by a transducer that has a 6-mm focal length and
6.35mm element diameter (nominal frequency at 50MHz, calibrated peak
frequency at 44.4MHz, V3330, Olympus). Both transducers were driven by a RF
power amplifier (30W1000B, Amplifier Research).

To directly visualize the results, a custom-built microscope with a � 20
objective (SLMPlan N, Olympus) and a tube lens of 100mm focal length was used
to image the target plane to a charge-coupled device camera (Stingray F145, Allied
Vision Technologies). To demonstrate the cytometry application, the fluorescent
signals were filtered by a 561-nm long-pass (LP02-561RE-25, Semrock) and a
582/75-nm band-pass filter (FF01-582/75-25, Semrock) and detected by a
single-photon-counting module (SPCM-AQRH-14, Perkinelmer).

Signal flow. The signal flow is shown in detail in Supplementary Fig. 2. The
sample beam and reference beam were modulated by 50MHz signals generated
from two channels of a function generator (AFG 3252, Tektronix). The optical field
transmitted through the sample was measured by the camera (exposure time:
20ms, framerate: 35 fps) of the DOPC system using 4-phase shifting-based digital
holography43. The phase shifting was synchronised with the camera exposure by
controlling signals from a data acquisition card (PCI-6281, NI). The ultrasound
burst signal (10 cycles, 10ms interval) was generated by another function generator
(4065, BK Precision) and time-gated (28.6ms) by the data acquisition card.

Sample preparation. The microbubbles (Optison, GE health care) was diluted to
10% (v/v%) in 1% (w/w%) agarose gel in aqueous phase or 1X phosphate buffered
saline (demonstration of flow stream monitoring) and perfused in an acrylic
capillary tube (inner diameter: 50 mm, outer diameter: 100 mm, Paradigm Optics),
which was positioned inside a clear polystyrene cuvette. Polyacrylamide gel (10%)

was used to fill the space in the cuvette to secure the capillary tube. Two diffusers
(10� 10mm, 220 grit ground glass, Edmund Optics) were placed outside the
cuvette in parallel with B10mm distance in between. The microbubble sheet was
B20 mm thick and sandwiched between two blocks of agarose gel with dimensions
of 10mm (x)� 10mm (y)� 3mm (z). The microbubble sheet was positioned
between and parallel to the diffusers. The ultrasound beam was aligned to the
microbubble sheet by maximizing the amplitude of the echo received from the
focus.

In the flow stream monitoring experiment, fluorescent microspheres with 4 mm
diameter (FluoSpheres 580/605, Life Science) were used as targets. In the ex vivo
tissue experiment, fresh chicken breast tissue was used as diffusive medium. For
each tissue diffuser, a piece of 2-mm-thick chicken breast tissue slice (10mm
(x)� 10mm (y)) was sandwiched between two pieces of cover glass separated by a
2-mm spacer.

Ultrasound beam characterization. We calculated the theoretical ultrasound
pressure field using the fast near-field method57. We first calculated the pressure
fields at different single frequencies ranging from 1 to 100MHz, and summed the
profiles with a weight accounting for transducer response and frequency spectrum
of ultrasound pulse train.

The ultrasound pressure was measured in room temperature water using a
calibrated hydrophone (HGL-0085, Onda). To characterize the profile of the
ultrasound beam, we operated the transducer in pulse-echo mode using a pulser-
receiver (5900PR, Olympus) and scanned a line target (air filled polycarbonate
tube, inner diameter 22.5 mm, outer diameter 25 mm, Paradigm Optics) by
translating the transducer in the lateral and axial direction, respectively58. This
method provides a more accurate measurement than using the hydrophone
because the active diameter of the hydrophone is larger than the waist of the
ultrasound beam generated by the V3330 transducer. The peak–peak voltages of
the echoes were measured by an oscilloscope (DPO 3012, Tektronix). Because the
measurement was based on single cycle burst, side lobes were not shown.

Watershed algorithm. We first binarized the image with a threshold that was
seven times higher than the background intensity. This step outputs a binary image
in which only the pixels around the peak have the value of 1. We then segmented
the binary image with a watershed algorithm and extracted the centroid of each
focal spots.
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