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Translation correlations in anisotropically
scattering media
Benjamin Judkewitz1,2*†, Roarke Horstmeyer2†, Ivo M. Vellekoop3, Ioannis N. Papadopoulos1

and Changhuei Yang2

Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of
communications and imaging applications. But, finding the right shape for the wavefront is a challenge when the mapping
between input and output scattered wavefronts (that is, the transmission matrix) is not known. Correlations in transmission
matrices, especially the so-called memory e�ect, have been exploited to address this limitation. However, the traditional
memory e�ect applies to thin scattering layers at a distance from the target, which precludes its use within thick
scattering media, such as fog and biological tissue. Here, we theoretically predict and experimentally verify new transmission
matrix correlations within thick anisotropically scattering media, with important implications for biomedical imaging and
adaptive optics.

Focusing light through strongly scatteringmedia is an important
goal in optical imaging and communication. Long considered
impossible, recent advances in the field of wavefront shaping1,2

changed this view by demonstrating that diffuse light can be focused
through inhomogeneous media—as long as the correct input
wavefront is used. With direct optical access to the target plane, the
correct wavefront can be obtained by iterative optimization2, phase
conjugation3, or by measuring the transmission matrix4,5. In many
imaging scenarios, however, there is no direct access to the target
plane. In those cases, nonlinear6, fluorescent7, kinematic8,9, acousto-
optic10–12 and photo-acoustic13–15 guide stars can be used as reference
beacons. However, these techniques provide wavefront information
for only one target location at a time. Although transmission
matrices can be sampled quickly with a photo-acoustic approach16,
this method requires absorbing samples. As a result, many samples’
transmission matrices can be sampled only sparsely. Correlations
within a transmission matrix can compensate for sparse sampling
and could enable high-speed imaging. One of the most widely
known transmission matrix correlations is the so-called ‘memory
effect’17,18, which describes the following phenomenon: when an
input wavefront reaching a diffusing sample is tilted within a certain
angular range, the output wavefront is equally tilted, resulting in the
translation of the far-field speckle pattern at a distance behind the
sample (see Fig. 1).

The translation distance within which this effect holds (that
is, the field of view (FOV)) is inversely proportional to diffuser
thickness L and directly proportional to the distance s of the
diffuser from the screen. It can be approximated by the equation
FOV≈ sλ/πL (refs 19–22).

The memory effect has found numerous applications for point
scanning23,24, direct image transfer20 and for computational image
recovery21,22,25,26. Yet, in all of these applications, the target plane
was at a distance from a thin diffuser with free space in between
(s> 0)—which has limited use for imaging inside thick scattering
media. As such samples are neither thin nor at a distance from the

target area of interest, the correlations predicted by the ‘traditional’
memory effect should be minimal27. Here, we set out to examine
whether there are other correlations that apply to such samples.
We show that significant transmission correlations can exist in
thick scattering media at zero distance, as long as scattering
is directional.

Traditional memory e�ect
Although the memory effect has been extensively derived from first
principles18, these derivations relied on assuming perfectly diffuse
scattering–which does not apply to many biological samples. Here
we will approach the problem without relying on diffusion, but
instead using transmission matrices. Specifically, we are interested
in the matrix Tx=T (xa,xb), which defines the relationship between
the spatial input and output optical modes of a scattering slab
(that is, from input plane A to output plane B). For simplicity
of graphical representation, we assume propagation of one-
dimensional (1D) wavefronts in a 2D geometry, but all conclusions
will be generalizable to 2D wavefronts in a 3D geometry. Owing to
its discrete nature, the transmission matrix is especially amenable
to experimental observation. We will first use our framework to
analyse the traditionalmemory effect, and then calculate the speckle
correlations in thick anisotropic media.

When assuming highly randomizing transmission, but incom-
plete measurement of input and output channels, the transmission
matrix is oftenmodelled as a randommatrix with complexGaussian
elements. However, the transmission matrix will have an additional
macroscopic structure, whichwill be particularly prominent for thin
scattering slabs: a point source on the input plane of the slab would
spread to a diffuse spot at the output plane (whose diameter would
be of the order of L for slabs with thickness L larger than one trans-
port mean free path—as predicted by the diffusion approximation).
As a result, even though individual transmission matrix elements
may not be known, the average amplitudes of the transmission
matrix elements decrease with distance from the diagonal. The
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Figure 1 | The traditional memory e�ect. a, The traditional memory e�ect
as described for light propagating through thin di�using slabs. Tilting the
input wavefront (plane A) reaching the slab tilts the scattered wavefront at
the output (plane B), which shifts the far-field intensity speckle pattern
projected on a screen (plane C). b, When the input wavefront is shaped to
converge at a spot on the screen, tilting the input wavefront scans the spot
laterally, which can be used for imaging by point scanning. The FOV of this
approach is approximated by the equation FOV≈sλ/πL.

corresponding bell-shaped profile along each transmission matrix
column turns Tx into a band matrix (see Fig. 2a).

To recognize tilt correlations, we are interested in how the band
structure of Tx manifests itself in the spatial frequency domain
(k-space) representation. Every spatial-domain transmissionmatrix
Tx can the transformed into the corresponding frequency-domain
transmission matrix Tk = T (ka, kb) by the following operation:
Tk=FTxF−1, whereF is a discrete Fourier transformmatrix.Here, ka
and kb are wavevectors at the input and output surfaces, respectively.
This operation is analogous to performing a 2D Fourier transform
and flipping it horizontally (we denote these two operations by the
operator F2D):

Tk∝F2DTx (1)

Expressing Tk in terms of the 2D Fourier transform of Tx provides
a straightforward explanation of how the macroscopic structure of
Tx influences correlations in Tk. Large values within Tx will tend to
concentrate near its diagonal, and entries will be zero elsewhere. As
Tx is narrow across the diagonal, its flipped 2D Fourier transform
(equation (1)) will contain features that are elongated along the
diagonal. The resulting diagonal correlations in Tk correspond to
the traditional memory effect, in which a tilt of the input wavefront
(shift in k-space) causes a tilt of the output wavefront, resulting in
a shifted speckle pattern at a distant screen. For this reason, and to
distinguish the traditional memory effect from further correlations
described below, we also refer to the traditional memory effect as a
‘tilt/tilt correlation’.

The band structure of Tx can be described analytically with
a spatial intensity propagator matrix28: Px(xa, xb)≡ 〈|Tx(xa, xb)|2〉.
This ensemble average removes any statistical fluctuations in Tx .
The average spread of intensity across the output surface, from
illumination with a point source input, will manifest itself in Px
as a non-negative envelope along its near-diagonals. The cross-
correlation theorem may then help re-express the spatial intensity
propagator matrix in the frequency domain:

F x→1k
2D Px = 6ka ,kb〈Tk(ka,kb)T ∗k (ka−1ka,kb−1kb)〉

∝ Ck(1ka,1kb) (2)

Here, Ck(1ka, 1kb) is the tilt/tilt correlation function, and
1ka=ka−ka ′ and 1kb=kb−kb ′ denote shifts in input and output
wavevectors, respectively. Typically, it is assumed that, Px depends
only on the difference between the input and output spatial
coordinates (shift-invariance). Then, equation (2) simplifies to

Ck(1ka,1kb)∝δ1ka ,1kbF
1x→1kbPx(1x) (3)

where 1x = xb − xa and δ is a Kronecker delta. Equation (3) is
the well-known memory effect28. As can be seen directly from
equation (2), the angular range over which the memory ef-
fect is significant is inversely proportional to the width of the
intensity propagator, Px . When considering intensity transmission,
equation (3) corresponds to the lowest-order C (1) term18. Unlike
such prior work, equation (2) also describes the general case of
tilt/tilt correlations for a geometry that is not invariant under
lateral translation.

These considerations reconfirm our expectation that the tradi-
tional memory effect may be minimal in thick biological media.
First, the average spread of intensity from the input to output surface
will increase with sample thickness, L (ref. 29). A wider Px(1x) will
subsequently reduce the range of tilt/tilt correlations between the
input and output planes. Second, the plane of interest is not at a dis-
tance from the sample, which means that the tilt at the output plane
would not translate into a useful spatial shift at the target plane.

Correlations in anisotropic media
We therefore investigated whether there might be other types of
transmission matrix correlation in thick samples, such as biological
media. We started by recognizing that in many samples scattering
is anisotropic and occurs primarily in the forward direction.
Scattering is particularly anisotropic in biological media, where the
anisotropy parameter g (the average cosine of the scattering angle)
typically ranges from 0.9 to 0.98 (refs 30,31). This means that after
a limited number of scattering events, the directionality of an input
beamwill be preserved to some extent as it reaches the output plane.
In other words, one input plane wave (one mode in k-space) will
result in a limited angular span of output waves.

As a result of such preserved directionality, anisotropically
scattering media will have a macroscopic structure in the Tk matrix
(rather than Tx). Large amplitudes in Tk will primarily concentrate
near its main diagonal (see Fig. 2b). By analogy to our prior
reasoning for the traditional memory effect, if Tk is a band matrix,
the entrieswithin each diagonal of its associatedTx will be correlated
with one another. Now, a spatial shift of the optical field at the input
plane will cause a spatial shift of the field at the output plane (this
is in contrast to the traditional memory effect, in which a tilt at the
input plane causes a tilt at the output plane).

The range of correlations in Tx will depend on the width of
the diagonally bordered envelope in Tk. Equivalent to equation (2),
we may define a k-space intensity propagator using an ensemble
average: Pk(ka, kb) ≡ 〈|Tk(ka, kb)|2〉. Here, the average intensity
spread of each input planewave into a finite outputwavevector ‘cone’
now specifies the envelope shape along the columns of Pk. Following
equation (3), we may show that the band structure of Pk creates
correlations in space:

F k→1x
2D Pk = 6xa ,xb〈Tx(xa,xb)T ∗x (xa−1xa,xb−1xb)〉

∝ Cx(1xa,1xb) (4)

with Cx(1Xa,1Xb) being the shift/shift correlation function. If the
k-space propagator Pk depends only on difference coordinates, then
equation (4) reduces to

Cx(1xa,1xb)∝δ1xa ,1xbF
1k→1xbPk(1k) (5)

where 1k=kb−ka. This result predicts the existence of shift/shift
correlations that are the exact Fourier conjugate of the traditional
(tilt/tilt) memory effect.

In equation (5), Pk includes the effects of sample anisotropy. Its
width scales inversely proportional with g but will increase with
sample thickness L (see Supplementary Section C). If Pk depends
only on difference coordinates, the correlation function can be
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Figure 2 | Correlations within transmission matrices (simulated). a, The traditional (tilt/tilt) memory e�ect explained in terms of transmission matrix
correlations. A pencil beam illuminating a thin slab will cause a di�use spot at the output surface, whose diameter dX is of the order of the slab thickness L.
The profile of the spot will be apparent in the (ordered) X/X transmission matrix, and results in strong near-diagonal components and zeros elsewhere. The
corresponding K/K transmission matrix is diagonally smeared (because X/X and K/K transmission matrices are related by the 2D Fourier transform).
Hence, a tilt (k-shift) at the input plane results in a corresponding tilt (k-shift) at the output plane. b, In anisotropically scattering media of finite thickness,
the directionality of the input light may be preserved. As a result, a plane wavefront illuminating the sample creates a limited spread of output wavefronts,
dK . This suggests that the K/K transmission matrix of anisotropic samples has elements of higher magnitude near its diagonal. This results in a diagonally
smeared X/X transmission matrix, indicating shift/shift correlations.

predicted by a simple experiment, namely by illuminating the
sample with a plane wave Ep(xa)= 1 and measuring the output
wavefront, Ep(xb)=TxEp(xa). The spectrum of Ep(xb) indicates the
average spread of wavevectors exiting the output surface:

Pk(1k)≡|F xb→1kEp(xb)|2 (6)

The Fourier transform of equation (6) subsequently yields the cor-
relation between the electric field outputs from two spatially shifted
inputs. In effect, the shape of the shift/shift correlation function
equals the autocorrelation of Ep(xb). A more detailed derivation of
equations (1)–(6) can be found in the Supplementary Information.

Experimental validation
To validate our predictions experimentally, we created four
scattering samples with well-defined scattering properties (3-µm-
diameter silica beads dispersed in agarose gel, g=0.978 as calculated
by Mie theory and scattering length 1/µs = 175 µm at 632 nm,
slab thickness L in micrometres: 140, 280, 560 and 1,120, or 1,
2, 4 and 8 spacers of 140 µm thickness). We then performed
four different experiments with this scattering sample set, as
detailed below.

First, we illuminated each sample with a random input wave and
recorded the output field, E0, using off-axis digital holography. We
translated each sample laterally (1x ranging from−10 µm to 10 µm
in 0.2 µm steps) and measured the absolute correlation C(1x) be-
tween the resulting output fields, E1x , and E0:C(1x)=corr(E0,E1x)

(Fig. 3a,c). Second, to compare these results with our predictions in
equation (6), we illuminated each of the samples with a plane wave
and calculated the autocorrelation of the output speckle patterns
(Fig. 3b,d). Third, our theory predicts that the correlation function
for one sample thickness L0 can be used to estimate the correlation
function for any other thickness (see Supplementary Equation C3);
for example, the correlation function for a slab of thickness 2L0 is
simply the correlation function for a slab of thickness L0, squared.
We therefore used the speckle autocorrelation measured for the

thinnest slab (blue curve in Fig. 3d) and calculated the remaining
correlation functions using Supplementary Equation C4 (Fig. 3e).
Fourth, we used Mie theory to obtain a single-scattering phase
function for our bead samples, and calculated the theoretical cor-
relation function using Supplementary Equation C1 (Fig. 3f). We
computed this last set of curves using only the refractive indices
of the media, the bead diameter and slab optical thickness (that
is, without using experimental data), as detailed in Supplementary
Section C. Figure 3f combines all four strategies for determining the
correlation function into one plot. It illustrates that the experimen-
tally measured correlation function is in agreement with all three of
our derived predictions.

The shift/shift correlations apply to any input field, including
fields that are shaped to converge to a sharp focus. To demonstrate
the use of these correlations for scanning a point focus across a
biological sample, we first used optical phase conjugation3 to focus
light (780 nm diode laser) through 500-µm- to 1-mm-thick slices of
chicken muscle tissue, employing off-axis holography for wavefront
measurement and a spatial light modulator (SLM) for wavefront
shaping11,12 (Fig. 4a). We projected a point source at one surface
of the tissue slice (surface A) and detected the scattered wavefront
propagating from this point through the tissue (exiting at surface B)
to the SLM plane. In the next step, we displayed the phase conjugate
of the detected wavefront, which travelled back through the tissue
and formed a focus on surface A.

To validate the predicted shift/shift correlations, we then shifted
the phase-conjugated wavefront laterally at surface B, testing
whether the focus at surface A would be preserved and whether
it moved. As expected, we noticed that motion of the shaped
wavefront resulted in concurrent movement of the focus (Fig. 4b,c),
while the focus intensity decreased with distance from the original
position, following a bell-shaped curve (Fig. 4d,e). For the 500 µm
slice the full-width at half-maximum (FWHM) was 5 µm, and
the full-width at tenth-maximum (FWTM) was 10 µm. In the
case of the 1,000 µm slice, the FWHM was 3 µm and the FWTM
was 6 µm.
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Figure 3 | Experimental validation. a, Experimental set-up for determining the shift/shift field correlation, C(1x), directly. b, Experimental set-up for
determining C(1x) using the speckle autocorrelation resulting from plane-wave illumination. c, Experimentally measured C(1x) using the set-up in a.
d, C(1x) obtained from the speckle autocorrelations measured in b. e, Correlation functions calculated from the speckle autocorrelation for the thinnest
sample (blue line in d). f, Correlation functions predicted by the radiative transfer equation using a phase function obtained by Mie theory. g, Overlay. We
made samples with di�erent thicknesses to cover a range of the forward-scattering and quasi-ballistic regime. As the thinnest sample is thinner than 1/µs,
the constant background in the correlations is due to the fact that speckles are not yet fully developed. As the thickness of the samples increases, and
speckles get more developed, the constant background approaches zero.

Published scattering parameters for chicken tissue vary, and
owing to experimental limitations, the single-scattering phase
function has not been determined. However, equation (6) provides
a practical way to predict the shift/shift correlation function
from the experimentally accessible speckle autocorrelation
function. We therefore illuminated the samples with a plane
wavefront and examined whether the shape of the spatial
autocorrelation of the resulting speckle pattern followed the profile
of the shift/shift correlations (Cx), as derived in equation (6).
Indeed, Fig. 4d,e shows that both profiles are in good experi-
mental agreement.

Discussion
The traditional (tilt/tilt) memory effect has recently enabled the
development of several modalities to image through scattering
‘walls’20–26. Intriguing as these methods are, they suffer from two
limitations: the sample should be thin, and the object should be
placed at a distance behind the sample.

Here, we demonstrated a complementary type of memory effect
that suffers fromneither limitation: the correlations are present even
inside thick scatteringmedia, as long as scattering is anisotropic and
the mapping between input and output wavefronts preserves any
level of directionality. This is the case up to a depth of about one
transport mean free path.

We showed that the shift/shift memory effect is the Fourier
complement of the traditional (tilt/tilt) memory effect, and
that the extent of correlations can be directly determined from
the spatial speckle autocorrelation function during plane-
wave illumination.

Our theory is general in the sense that it applies to any linear
propagation, which can be described by an input–output matrix. If
this matrix is banded in the spatial frequency domain, there will
be shift/shift correlations. This means that there will be an effect
whenever the directionality of the inputwaves ismaintained to some
degree at a chosen output plane, where the ‘output’ plane could be
inside the sample, on the opposite surface, or beyond the opposite
surface in free space.

As compared with correlations measured at the surface, the
extent of correlations within biological media may be affected by
diffuse back-scattering from deeper layers. To estimate the extent of
this effect, we can decompose the angular intensity propagator Pk
into the forward-scattered component (equivalent to the one mea-
sured at the output surface of a slab with thickness t) and the back-
scattered or diffuse component. In the case of highly anisotropic
media such as biological tissue, we can expect that the forward-
propagating component will dominate in the quasi-ballistic regime.
For example, if the ratio of back-scattered versus forward-scattered
power in the semi-infinite medium at depth t was 20%, we would
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Figure 4 | Using shift/shift correlations for focusing. a, Experimental
set-up. b, The time-reversed spot (middle) and shifted foci resulting from
laterally shifting the phase-conjugated wavefront at the sample. c, Line scan
(intensity profile) along the blue dashed line in b while shifting the input
wavefront. d,e, Focus peak intensity as a function of shifted location for
500 µm (d) and 1,000 µm (e) tissue slices. Black curve: prediction based on
the speckle autocorrelation measured during plane-wave illumination
(equation (2)).

still expect 80% of the field correlations present at the surface of an
equivalent slab with thickness t .

Thus, our results pave the way for extending memory-effect-
based imaging methods20–26 to also work inside biological tissue. On
the basis of our measurements, we expect such methods to achieve
diffraction-limited resolution at a depth of 1mm inside muscle
tissue, albeit at a limited FOV of<10 µm, initially.

We foresee several possibilities to further increase the FOVof our
method, for example by tiling neighbouring FOVs using multiple
corrections or by interpolating a sparsely sampled transmission
matrix, which can be under-sampled by two orders of magnitude.
Furthermore, our results suggest that the extent of correlations
will be largest for photons that have undergone few scattering
events and little angular deviation—also called snake-photons.
Hence, selective measurement and correction of snake-photons
(for example, by temporal gating, coherence gating or spatial
filtering) may considerably increase the extent of correlations and
the imaging FOV.

Finally, we note that tilt/tilt and shift/shift correlations are not
mutually exclusive. For example, recent work establishes that light
within biological tissue exhibits much stronger tilt/tilt correlations
than in low-g media32. This is because light spreads less across
both angle and space in anisotropically scattering media, making
both Pk and Px highly non-uniform. Even though using strict
tilt/tilt correlations for scanning or imaging still requires a finite
distance between the scattering sample and target (and may thus
not be applicable for imaging biological media), we anticipate
that a potential combination of both memory effects into a joint
model could further extend the translation correlations described
here. Furthermore, we anticipate that there may be additional
correlations present in biological media. Future work measuring
complete transmission matrices in the adaptive optics and the
complex wavefront shaping regime will shed light on spectral,
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Figure 5 | Comparison between shift/shift correlations and adaptive
optics microscopy. a, Shift/shift correlations, in which a point at the target
plane can be scanned by shifting the corrected input wavefront. The range
of correlations is indicated by the dashed line. b, Typical set-up in adaptive
optics microscopy, where corrected wavefronts are tilted in the Fourier
plane. This leads to a shift of the propagated wavefront at the sample
surface, causing a shift of the corrected focus. The so-called isoplanatic
patch (that is, the range within which the correction applies) is indicated by
the dashed circle.

temporal and spatial correlations. They may ultimately be used in
combination with the shift/shift correlations reported here.

We note that the described shift/shift correlations are consistent
with the set-up geometry of adaptive optics microscopy (Fig. 5),
where wavefronts are corrected in the conjugate Fourier plane of the
microscope objective. Tilting the incoming wavefront in the Fourier
plane (for example, in a laser scanningmicroscope) leads to a shift of
thewavefront reaching the sample and a resulting shift of the focus33.
In other words, adaptive optics microscopy implicitly already takes
advantage of shift/shift correlations, albeit in the ballistic regime—
as such it can be interpreted as a special case of the general shift/shift
correlations derived here.

With further study of spatial, spectral and temporal transmission
matrix correlations, these advances may lead to a unified under-
standing of adaptive optics and complex wavefront shaping and ex-
tend their use in thick biological tissues, enabling versatile imaging
and photostimulation in a wide range of biologically relevantmedia.
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