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Novel techniques in the field of wavefront shaping have enabled light to be focused deep inside or through scat-
tering media such as biological tissue. However, most of these demonstrations have been limited to thin, static
samples since these techniques are very sensitive to changes in the arrangement of the scatterers within. As the
samples of interest get thicker, the influence of the dynamic nature of the sample becomes even more pronounced
and the window of time in which the wavefront solutions remain valid shrinks further. In this paper, we examine
the time scales upon which this decorrelation happens in acute rat brain slices via multispeckle diffusing wave
spectroscopy and investigate the relationship between this decorrelation time and the thickness of the sample
using diffusing wave spectroscopy theory and Monte Carlo photon transport simulation. © 2016 Optical

Society of America
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1. INTRODUCTION

The optical opacity of biological tissue in the visible regime has
long been a challenge in the field of biomedical optics. Since the
light traveling through thick samples undergoes many scattering
events, the information about the sample is scrambled and the
light field exiting the sample forms a random speckle pattern [1].

While this scrambling of the light field makes it difficult to
accurately image thick, highly scattering biological samples
with conventional optical techniques, new research in the field
of wavefront shaping enables light to be focused in or through
strongly scattering tissue and has demonstrated progress toward
this goal of deep-tissue imaging [2–6]. In contrast to techniques
such as confocal microscopy or optical coherence tomography,
which seek to gate out and use only the unscattered or singly
scattered portion of light passing through the sample, these
wavefront shaping techniques incorporate even multiply scat-
tered portions of the scattered light field.

While these wavefront shaping techniques have been pri-
marily demonstrated with static scattering samples or fixed bio-
logical tissues, the ability to apply these techniques to living
biological tissues is the ultimate goal. The main challenge facing
this development is the dynamic nature of living tissue. In bio-
logical tissue where the average number of scattering events for
an individual photon traveling through the sample is very large,
small changes in the composition of the sample can break the

time-reversal symmetry of optical scattering and cause a mis-
match between the shaped wavefront and the correct wavefront
solution, severely degrading the quality of the shaped focus.
From previous studies, it is known that this degradation is pro-
portional to the intensity autocorrelation function of the scat-
tered light—a conventional measure of scatterer movement [7].

In this study, we measure the intensity autocorrelation
function of acute brain tissue slices from rats and examine
the relationship between the characteristic decorrelation time
and tissue thickness, comparing the results with the theoretical
predictions of diffusing wave spectroscopy (DWS) which sug-
gest that the decorrelation time should be inversely proportional
to the square of the thickness [8–12]. The results of this study
elucidate the time scale on which the movement inside tissue
occurs and guide the further development of fast wavefront shap-
ing techniques, especially toward the development of improved
light delivery techniques for optogenetics both on in vitro acute
brain slices and eventually for in vivo applications [13–16].

2. THEORY

The wave nature of light allows for very small changes in optical
path length to be probed using interference. In samples which
exhibit strong multiple scattering such as biological tissue, these
interference effects manifest themselves as a speckle pattern and
changes to the scattering media cause the speckle pattern to
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change over time. By capturing a sequence of images of the
speckle pattern over time, the degree of correlation between
a reference frame and each subsequent frame can be computed,
thus providing a measure of how rapidly the scatterers inside
the sample are moving. This method of measuring the intensity
correlations of speckle over time to analyze the dynamic nature
of scattering media was originally developed by Maret, Wolf,
Pine, and others in the late 1980s and is known as
DWS [8,10,17].

The main aim of DWS is to relate the movement of the
scatterers to the decay of the autocorrelation of the measured
electric field. As derived by Maret and Wolf [17], the electric
field autocorrelation in the case of multiple scattering and
Brownian motion particle diffusion can be written as

g1�τ� �
Z

∞

0
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��

−
2τ

τ0

�
s
l�

�
ds; (1)

where τ is the delay time, τ0 � 1∕�Dk20� is the characteristic
decay time, k0 � 2π∕λ is the wavenumber of the light in
the medium, D is the diffusion constant of the scattering par-
ticles, l� is the transport mean-free path, s is the path length,
and P�s� is the distribution of path lengths in the medium.
From this equation we can see that the field autocorrelation
is essentially a weighted sum [weights P�s�] of exponential de-
cays at rates set by D, k0, l�, and s. However, by examining
different thicknesses of the same sample in the same experimen-
tal configuration, D, k0, and l� are essentially fixed. Therefore,
we can directly probe the relationship between the thickness
and the characteristic decay time by determining the depend-
ence of P�s� on the thickness.

By measuring the ratio of unscattered light to the incident
beam intensity, we found the scattering coefficient for the brain
slices in our experiment to be μs � 50∕mm. This is in good
agreement with the values found in the literature [18].
Using this fact and the forward scattering nature of tissue
(anisotropy factor of g ≈ 0.9 ), we find a reduced scattering co-
efficient of μ 0

s ≈ 5∕mm. We note here that in our experiment
we assume that absorption is negligible since the mean absorp-
tion length is an order of magnitude longer than the transport
mean-free path (μa � 0.2∕mm, μ 0

s � 5∕mm) [10,18,19]. If
the sample thickness is much greater than the transport
mean-free path (L ≫ l�), the transport of light can be treated
as diffusive. Under this assumption, commonly known as the
diffusion approximation, DWS theory predicts via a first cumu-
lant expansion of the electric field autocorrelation function that
the decay of the autocorrelation function [Eq. (1)] should be
proportional to 1∕L2, where L is the sample thickness [8].
However, when the sample thickness is thin enough so that
it is only several times greater than the transport mean-free
path, the predictions of the diffusion approximation will break
down and the decay of the autocorrelation will be more closely
proportional to 1∕L, due to the quasi-ballistic propagation of
light [20–23]. Here we note that even if the diffusion approxi-
mation is not valid, the framework of DWS still holds as long as
the light is multiply scattered by noninteracting Brownian par-
ticles [17]. In practice, the path length distribution P�s� in cases
where the diffusion approximation breaks down is difficult to
analytically calculate and must be approximated via computa-
tional methods such as Monte Carlo analysis.

In order to experimentally measure the electric field auto-
correlation function it would be most convenient to directly
measure the electric field of the scattered light field.
However, due to the limitations of intensity-only detectors such
as photodiodes and conventional CMOS and CCD cameras,
measuring the electric field directly is not experimentally con-
venient. Fortunately, using intensity-only measurements we
can calculate an intensity autocorrelation function by compar-
ing data points taken at time t0 and at a later time t0 � τ and
relate the calculated intensity autocorrelation function to the
electric field autocorrelation function via the Siegert relation
[24]. Here, the intensity autocorrelation function is given by

g2�τ� ≡
hI�t0�I�t0 � τ�i
hI�t0�ihI�t0 � τ�i ; (2)

where I�t0� and I�t0 � τ� are the captured intensities at times
t0 and t0 � τ, respectively, and h·i indicates an average over all
captured data for a given delay time. Then, assuming an ergodic
system, the intensity autocorrelation function can be related
to the field autocorrelation function through the Siegert
relation as

g2�τ� � 1� βjg1�τ�j2: (3)

Here, g2�τ� is the intensity autocorrelation function, g1�τ� is
the field autocorrelation function, and β is an experimental fac-
tor between 0 and 1 determined by the collection optics and
capture parameters. In our experiment, β is determined to be
∼0.7–0.8 by using the value β � g2�0� − 1.

Traditionally, the intensity autocorrelation function is cal-
culated by monitoring the intensity fluctuations of a single
speckle via a photodiode and relating the intensity autocorre-
lation to the field autocorrelation function using ergodicity.
However, with the recent advances in high-speed camera tech-
nology along with improved data storage and transfer speed
capabilities, a more powerful experimental scheme is available.
In multispeckle diffusing wave spectroscopy, the photodiode is
replaced by a high-speed array sensor which samples many
speckles in parallel at the same time [11]. This relaxes the re-
quirements for temporal ergodicity of the sample since many
speckles are measured in parallel and enhance the statistical
strength of the method to analyze systems with both fast
and slow dynamics. In this framework, each measurement is
a 2D image, the multiplication in Eq. (2) is computed element-
wise, and the temporal averages are replaced by pixelwise
averages of the stationary 2D captured frames. Using this
procedure, we can capture a time series of speckle pattern
images generated by the scattering media and compute the field
autocorrelation function [g1�τ�] using the intensity autocorre-
lation function [g2�τ�] and the Siegert relation [Eq. (3)],
thereby characterizing the dynamic nature of the sample.

3. EXPERIMENTAL SETUP

Figure 1 shows a diagram of the experimental setup used to
capture the sequence of speckle patterns. A diode-pumped solid
state laser (λ � 532 nm) illuminates the bottom surface of the
sample rat brain slice with a beam diameter of approximately
500 μm. The brain slice is gently fixed with a slice anchor
(Warner Instruments, SHD-22L/15) at room temperature in
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a homemade bath containing phosphate buffered saline to keep
the sample hydrated and at a constant temperature. The speckle
patterns were captured using a microscope objective focused on
the top surface of the brain tissue (Olympus, 20X LCAch N
PH) and imaged to a sCMOS camera (PCO-TECH, pco.edge
5.5) at a frame rate of 100 frames per second and exposure time
of 1 ms. To improve the contrast of the captured speckle im-
ages, a linear polarizer was placed in the infinity space region of
the microscope and an iris was placed directly behind the exit
pupil of the objective to control the speckle size on the detector.
The iris was set such that the speckle size on the camera was
∼3 × 3 pixels to ensure adequate sampling [11]. In order to
sample a large number of speckles for statistical stability, a
200 × 200 pixel region of interest in the center of the frame
was selected (∼4400 speckles). The entire setup was firmly
mounted on a vibration isolating optical table to ensure stability
and confirmed using a static scattering sample.

Four brain tissue thicknesses of 1, 1.5, 2, and 3 mm from a
3 month old Long–Evans rat were sliced using a vibratome
(Leica, VT1200) to ensure accurate thickness. All animal
handling procedures were conducted in compliance with the
Institutional Animal Care and Use Committee at the
California Institute of Technology. Then, the brain tissue slices
were mounted in the tissue holder and speckle patterns were
captured from ∼12 different positions in the tissue samples.
The data was captured as quickly as possible within a period
of several hours following acquisition of the slices to ensure
maximum sample freshness.

4. DATA ANALYSIS

After a time series of speckle images is captured, the image
stacks are analyzed in MATLAB according to Eq. (2) to com-
pute the intensity autocorrelation function for each thickness.
Figure 2 shows an intuitive way to understand the calculation
procedure.

The images in Fig. 2 represent the captured speckle patterns
at delay times of 0, 3, 8, 15, and 26 s, respectively. In order to
compute the intensity correlation function g2�τ�, each image in
the time series is multiplied entrywise with the first image in the
series, and the pixelwise average of this product is divided by
the product of the pixelwise averages of individual frames.
Then, the Siegert relation is used to calculate the field autocor-
relation function, where β is taken as g2�0� to normalize g1�τ�.

5. EXPERIMENTAL RESULTS

In order to analyze the relationship between the decay rate of
the decorrelation curves and the thickness of the sample, we fit
each individual decorrelation curve to an exponential decay
function given by

a � exp

�
−
t
td

�
� �1 − a�; (4)

where a is the amplitude of the decay, the �1 − a� offset is added
to account for noise factors which cause the decorrelation func-
tion not to drop to zero as t → ∞, and td is the decorrelation
time. Here, the decorrelation time td is inversely related to the
first cumulant, providing a measure of the average decay rate of
the distribution [25]. Therefore, by fitting the decorrelation
curves in this way and calculating the decorrelation time we
can provide a figure of merit for the decay of the autocorrelation
function and the movement of the scatterers in the tissue.

Figure 3 shows the decorrelation curves for the 1.0, 1.5, 2.0,
and 3.0 mm rat brain tissue slices. Each plot shows the fitted
curve of the sample mean across trials with dashed fitted curves
above and below indicating the sample standard deviation of
the curves. As the tissue sample thickness increases, the decay
rate of the decorrelation curves increases.

Fig. 1. Experimental setup used to capture the speckle patterns.
(a) The scatterers inside the tissue cause the collimated light to form
a diffusive speckle pattern which changes over time due to the random
Brownian motion of the scatterers within the tissue. (b) Diagram
illustrating how the sample is mounted. (c) The speckle pattern is then
imaged on the camera and a sequence of images is captured.

Fig. 2. Calculation procedure for calculating the decorrelation
curves is performed by comparing each speckle pattern in the captured
sequence with an original reference frame (τ � 0). By pixelwise multi-
plying the sample and reference speckle image together and dividing
by the mean intensities of each image, the degree of correlation at delay
time τ can be quantified as g2�τ�. Then, g1�τ� is calculated via Eq. (3).
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Figure 4 shows the decorrelation times of each trial with
respect to the tissue thickness. This decorrelation time indicates
the time it takes for the amplitude (a) of the calculated electric
field autocorrelation function to decay to a∕e. The measured
data show an average decorrelation time of 9.38, 5.65, 3.95,
and 2.27 s with standard deviations of 3.63, 1.50, 1.03, and
0.89 s for the 1.0, 1.5, 2.0, and 3.0 mm thicknesses, respec-
tively. To analyze the trend of the decorrelation time versus
tissue thickness, we fit the decorrelation time data with a model
related to the inverse of a power of the tissue thickness L,
f �L� � a∕Lb. This yields fitted values of a � 9.40 and
b � 1.26. As we expected, we see that the relationship between
the decorrelation time and tissue thickness falls between a 1∕L
and 1∕L2 description.

There are several reasons why the relationship between de-
correlation time and thickness is not purely described by a 1∕L
or 1∕L2 model. The first reason is due to the breakdown of the
diffusion approximation. As noted by several authors in the

DWS community, the assumption that light can be treated
as diffusive begins to break down in the regime where the thick-
ness of the scattering medium is of the same order of magnitude
as the transport mean-free path (L < 10 × l�) [20–23]. In fact,
when the scattering medium is only a few times thicker than
the transport mean-free path, the actual scattering path length
distribution P�s� is skewed toward shorter path lengths than
predicted by photon-diffusion approximation [22]. This is
due to the fact that while the diffusion approximation suggests
that the path lengths increase proportional to the square of the
thickness of the scattering medium, the scattering path length
of the quasi-ballistic component linearly scales with the sample
thickness, resulting in a 1∕L-scaling of the decorrelation time
[21]. As mentioned earlier, the transport mean-free path in the
gray matter of rat brain used in this experiment is ∼0.2 mm.
Thus, in the thickness range from 1 to 3 mm, we expect to
observe the transition in scaling relation between a 1∕L model
toward a 1∕L2 model rather than the exact 1∕L2 scaling pre-
dicted by the diffusion approximation. In addition, while the
order of magnitude difference between the mean absorption
length and the mean scattering length decreases the effect of
absorption, incorporating the effects of absorption also shifts
the characteristic decay times toward a 1∕L model even in the
diffusive regime [10]. This discussion is continued in Section 6,
where we perform Monte Carlo simulations to analyze the ef-
fect of sample thinness (nondiffusive regime) and absorption.

While our experiment was designed to reduce the influence
of potential sources of experimental error, the unavoidable
heterogeneity of the sample leads to spatially varying scattering
properties, therefore impacting the decay characteristics. These
effects are especially pronounced in the thin slices (1.0 and
1.5 mm) where the transport mean-free path is especially small
compared to the thickness. This means that even small changes
in the transport mean-free path will have a significant impact
on the path length distribution [P�s�] and ultimately on the
decay characteristic of the tissue.

6. MONTE CARLO SIMULATION

To further investigate the sources for the deviation from the
1∕L2 prediction of the diffusion approximation, we conducted
a Monte Carlo simulation of the photon transport through the
tissue to evaluate the path length distribution P�s� of the pho-
tons traveling through the sample. Modeling the sample
as a semi-infinite slab medium with the optical properties
μs � 50∕mm, g � 0.9, and μa � 0.2∕mm, we simulated the
path length distributions for the 1, 1.5, 2, and 3 mm thick-
nesses used in our experiment. To construct the path length
distributions we built a custom single-layer, time-resolved
Monte Carlo simulation based on the standard Monte Carlo
simulation package developed by Wang et al. [26], recording
the path length of each photon which passed through the sam-
ple and was collected within the 0.2 NA and ∼0.2 mm2 field of
view of the objective used. The results of the Monte Carlo sim-
ulation are shown below in Fig. 5.

As the thicknesses of the sample increase, we observe a grow-
ing average path length as well as a broadening of the path
length distribution. For the 1.0, 1.5, 2.0, and 3.0 mm slices,
the average path lengths are 2.1, 3.9, 5.8, and 10.2 mm,

Fig. 3. Decorrelation curves for 1.0, 1.5, 2.0, and 3.0 mm thick
brain slices. Data points shown at intervals of 0.75 s. 12, 13, 12,
and 10 data sets are presented for the 1.0, 1.5, 2.0, and 3.0 mm thick-
nesses, respectively. The center of the three fitted curves show the
sample mean and the two outer curves show the sample standard
deviation bounds.

Fig. 4. Decorrelation times of the individual trials plotted with re-
spect to the tissue thickness. The mean decorrelation curve is indicated
by the solid line with sample standard deviation bounds illustrated by
the dashed lines above and below.

Research Article Vol. 33, No. 2 / February 2016 / Journal of the Optical Society of America A 273



respectively. Since the first cumulant expansion exponential fits
used to determine the decorrelation times are proportional to
the inverse of the mean path length, we can analyze the rela-
tionship between the inverse of the mean path length and
thickness to get a better understanding of the relationship
between decorrelation time and thickness from the simulation
results. Figure 6 shows the relationship between the inverse of
the mean path length and the tissue thickness both in the cases
where absorption is present and when it is not.

From the simulated data points and corresponding fits in
Fig. 6 we can understand the influence of absorption on the
measured results. Plotting the inverse of the mean path lengths
with respect to tissue thickness and fitting with a∕Lb, where a
and b are fitting parameters and L is the tissue thickness, reveals
that the effect of absorption at small thicknesses is to shift the
trend of the decorrelation curve from a 1∕L2 relationship
toward a 1∕L trend. For the tissues greater than 2.0 mm we

see that the absorption plays a role by terminating the long scat-
tering path lengths, thereby reducing the mean scattering path
length. These results suggest that the absorption of the tissue,
while much weaker than the effects of scattering, still has a
marked impact on the trend of decorrelation time versus thick-
nesses, reducing the strength of the 1∕Lx trend.

7. CONCLUSION

In this paper we have experimentally probed the relationship
between the decorrelation time and the thickness of rat brain
tissue using multispeckle diffusing wave spectroscopy. As new
optical tools are developed to focus light deep into brain tissue
for imaging or selective excitation of neuronal populations,
these results will serve as a useful guide in determining how
fast these systems must be to respond to the dynamic nature
of tissue in the absence of blood.

We note that in general, the movement of blood and sur-
rounding tissues causes much faster decorrelation and is the
ultimate challenge to overcome in in vivo applications.
However, the results of this study are directly applicable to
the selective excitation of neurons in acute brain slices via
optogenetics using deep-tissue light-focusing methods and also
to in vivo experiments where blood flow is suppressed via
immobilization techniques [7].

Recently, several fast wavefront shaping techniques have
been demonstrated with response speeds of the order of several
milliseconds [14,15]. Based on the results from this study, we
expect that these wavefront shaping techniques will be able to
successfully focus light through brain tissue thicker than
10 mm as long as certain practical SNR requirements are
met. This capability may enable entire acute brain sections
to be optogenetically excited using these techniques. In future
studies we hope to investigate further how this information can
enhance the development of novel optical systems to overcome
the dynamic nature of biological tissue and enable in vivo,
deep-tissue imaging.
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