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This paper presents a technique to image the complex index of refraction of a sample across three dimensions. The
only required hardware is a standard microscope and an array of LEDs. The method, termed Fourier ptychographic
tomography (FPT), first captures a sequence of intensity-only images of a sample under angularly varying illumina-
tion. Then, using principles from ptychography and diffraction tomography, it computationally solves for the sample
structure in three dimensions. The experimental microscope demonstrates a lateral spatial resolution of 0.39 μm and
an axial resolution of 3.7 μm at the Nyquist–Shannon sampling limit (0.54 and 5.0 μm at the Sparrow limit, respec-
tively) across a total imaging depth of 110 μm. Unlike competing methods, this technique quantitatively measures the
volumetric refractive index of primarily transparent and contiguous sample features without the need for interfer-
ometry or any moving parts. Wide field-of-view reconstructions of thick biological specimens suggest potential
applications in pathology and developmental biology. © 2016 Optical Society of America

OCIS codes: (180.6900) Three-dimensional microscopy; (110.6955) Tomographic imaging.
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1. INTRODUCTION

It is challenging to image thick samples with a standard micro-
scope. High-resolution objective lenses offer a shallow depth of
field, which require one to axially scan through the sample to visu-
alize its three-dimensional (3D) shape. Unfortunately, refocusing
does not remove light from areas above and below the plane of
interest. This longstanding problem has inspired a number of sol-
utions, the most widespread being confocal designs, two-photon
excitation methods, light sheet microscopy, and optical coherence
tomography. These methods “gate out” light from sample areas
away from the point of interest and offer excellent signal enhance-
ment, especially for thick, fluorescent samples [1].

Such gating techniques also encounter several problems. First,
they typically must scan out each image, which might require physi-
cal movement and can be time consuming. Second, the available
signal (i.e., the number of ballistic photons) decreases exponentially
with depth. To overcome this limit, one must use a high NA lens,
which provides a proportionally smaller image field of view (FOV).
Finally, little light is backscattered when imaging non-fluorescent
samples that are primarily transparent, such as commonly seen in
embryology, in model organisms such as zebrafish, and after the ap-
plication of recent tissue clearing [2] and expansion [3] techniques.

Instead of capturing just the ballistic photons emerging from
the sample, one might instead image the entire optical field,
which includes light that has scattered. Several techniques have
been proposed to enable depth selectivity without gating for bal-
listic light. One might perform optical sectioning through digital
deconvolution of a focal stack [4]. Light-field imaging [5] and

point-spread function engineering [6] are two other alternatives.
All three of these methods primarily operate with incoherent
light, e.g., from fluorescent samples. They are thus not ideal tools
for obtaining the refractive index distribution of a primarily trans-
parent and non-fluorescent medium.

To do so, it is useful to use coherent illumination. For exam-
ple, the amplitude and phase of a digital hologram may be
computationally propagated to different depths within a thick
sample, much like refocusing a microscope. However, the field
at out-of-focus planes still influences the final result. Several tech-
niques also aim for depth selectivity by using quasi-coherent
illumination or through acquiring multiple images [7–10].

A very useful framework to summarize how coherent light
scatters through thick samples is diffraction tomography (DT),
as first developed by Wolf [11]. In a typical DT experiment,
one illuminates a sample of interest with a series of tilted plane
waves and measures the resulting complex diffraction patterns in
the far field. These measurements may then be combined with a
suitable algorithm into a tomographic reconstruction. An early
demonstration of DT by Lauer is a good example [12].
Typically, the reconstruction algorithm assumes the first Born
[13,14] or the first Rytov [15] approximation. It is also possible
to apply the projection approximation, which models light as a
ray. As a synthetic aperture technique, DT comes with the addi-
tional benefit of improving the resolution of an imaging element
beyond its traditional diffraction-limit cutoff [12].

However, as a technique that models both the amplitude and
phase of a coherent field, most implementations of DT require a
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reference beam and holographic measurement, or some sort of
phase-stable interference (including spatial light modulator cod-
ing strategies, e.g., as in Ref. [16]). Since it is critical to control for
interferometric stability [13] and thus limit the motion and phase
drift to sub-micrometer variations, DT has been primarily imple-
mented in well-controlled, customized setups. Several prior works
have considered solving DT from intensity-only measurements to
possibly remove the need for a reference beam [17–26]. However,
while some applied the first Born approximation, these works also
required customized setups and typically imposed additional
sample constraints (e.g., a known sample support). They did not
operate within a standard microscope or connect their recon-
struction algorithms to ptychography, from which improvements
like computational aberration correction [27] and multiplexed
reconstruction [28] may be easily adopted.

Here, we perform DT using standard intensity images cap-
tured under variable LED illumination from an array source.
Our technique, termed Fourier ptychographic tomography
(FPT), acquires a sequence of images while changing the light
pattern displayed on the LED array. Then, it combines these im-
ages using a phase retrieval-based ptychographic reconstruction
algorithm, which computationally segments a thick sample into
multiple planes, as opposed to physically rejecting light from above
and below one plane of interest. Similar to DT, FPT also improves
the lateral image resolution beyond the standard cutoff of the im-
aging lens. The end result is an accurate three-dimensional map of
the complex index of refraction of a volumetric sample obtained
directly from a sequence of standard microscope images.

2. RELATED WORK

To begin, a number of techniques attempt 3D imaging without
applying the first Born approximation. These include lensless on-
chip devices [29], lensless setups that assume an appropriate lin-
earization [30], and methods relying upon effects like defocusing
(e.g., the transport of intensity equation [31]) or spectral varia-
tions [32]. These techniques do not necessarily fit within a stan-
dard microscope setup or offer the ability to simultaneously
improve spatial resolution. Two related works for 3D imaging,
which also do not use DT with the first Born approximation,
are by Tian and Waller [33] and Li et al. [34]. These two setups
are quite similar to ours, and we discuss their operations in more
detail below.

As mentioned above, there are also several prior works apply-
ing DT under the first Born approximation that only use intensity
measurements [17–26]. While some of these works examine
phase retrieval as a reconstruction algorithm, they must either
shift the focal plane [22,24] or source [25] axially between each
measurement, or must assume constraints on the sample
[19,20,23,26] to successfully recover the phase. These prior works
do not connect DT to ptychographic phase retrieval (i.e., they do
not recover the phase by using diversity between the variably
illuminated DT images). Connections between phase retrieval
and DT under the first Born approximation have also been
explored within the context of volume hologram design [35].

The field of x ray ptychography also offers a number of meth-
ods to image 3D samples with intensity measurements [36–38].
However, none of these ptychography methods seem to directly
modify DT under the first Born or Rytov approximation, to the
best of our knowledge. A popular technique appears to use stan-
dard two-dimensional (2D) ptychographic solvers to determine

the complex field for individual projections of a slowly rotated
sample, which are subsequently combined using conventional
DT techniques [39].

Fourier ptychography (FP) [40] uses a standard microscope
and no moving parts to simultaneously improve image resolution
and measure quantitative phase but is restricted to thin samples.
FPT effectively extends FP into the third dimension. As noted
above, Tian and Waller [33] and Li et al. [34] also examine
the problem of 3D imaging from intensities in a standard micro-
scope. These two examples adopted their reconstruction tech-
nique from a 3D ptychography method [37,38] that splits up
the sample into a specified number of infinitesimally thin slices
(each under the projection approximation) and applies the beam
propagation method (i.e., assumes small-angle scattering) [41].
This “multi-slice” approach remains accurate within a different
domain of optical scattering than the first Born approximation
(i.e., for different types of samples and setups, see chapter 2 in
Ref. [42]). For example, one may include both forward and back-
scattered light in a DT solver to accurately reconstruct a 3D sam-
ple under the Born approximation [12]. However, the multi-slice
method does not directly account for backscattered light. Its pro-
jection approximation also assumes the lateral divergence of the
optical field gradient at each slice is zero. Alternatively, the validity
of first Born approximation breaks down when the total amount
of absorption and phase shift from a sample is large [43], whereas
this appears to impact the multi-slice approach less (e.g., it can
image two highly absorbing layers separated by a finite amount
of free space [33,34]).

Thus, while the experimental setup of FPT is similar to prior
work [33,34,40], our reinterpretation of ptychography within the
physical framework of DT (under the first Born approximation)
allows us to accurately reconstruct new specimen types in 3D
without measuring phase. For example, primarily transparent
samples of continuously varying optical density, which are
often encountered in biology, typically obey the first Born
approximation. Accordingly, we have used FPT to compute some
of the first quantitatively accurate 3D maps of clear samples that
contain contiguous features (e.g., an unstained nematode parasite
and starfish embryo) from standard microscope images.

In addition, FPT offers a clear picture of the location and
amount of data it captures in 3D Fourier space. Such knowledge
currently helps us to establish various solution guarantees for 2D
image phase retrieval [44]. These guarantees may also extend to
the current case of 3D tomographic phase retrieval (e.g., to sup-
port its potential clinical use). Furthermore, instead of specifying
an arbitrary number of sample slices and their location in a 3D
volume, FPT simply inserts measured data into its appropriate 3D
Fourier space location and ensures phase consistency between
each measurement. By solving for the first term in the Born
expansion, we aim this approach as a general framework to even-
tually form quantitatively accurate tomographic maps of complex
biological samples with sub-micrometer resolutions.

3. METHOD OF FPT

In this section, we develop a mathematical expression for our im-
age measurements using the FPT framework and then summarize
our reconstruction algorithm. We use the vector r � �rx ; ry; rz�
to define the 3D sample coordinates and the vector k �
�kx; ky; kz� to define the corresponding k-space (wave vector) co-
ordinates (see Fig. 1).
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A. Image Formation in FPT

It is helpful to begin our discussion by introducing a quantity
termed the scattering potential, which contains the complex index
of refraction of an arbitrarily thick volumetric sample,

V �r� � k
4π

�n2�r� − n2b�: (1)

Here, n�r� is the spatially varying and complex refractive index
profile of the sample, nb is the index of refraction of the back-
ground (which we assume is constant), and k � 2π∕λ is the wave-
number in vacuum. We note that n�r� � nr�r� � 1i · nim�r�,
where nr is associated with the sample’s refractive index, nim is
associated with its absorptivity, and we define 1i � ffiffiffiffiffi

−1
p

for nota-
tional clarity. We typically neglect the dependence of n on λ since
we illuminate with quasi-monochromatic light. This dependence
cannot be neglected when imaging with polychromatic light.
Finally, we use the term “thick” for samples that do not obey
the thin sample approximation, which requires the sample thick-
ness to be much less than 2∕kθ2max, where θmax is the magnitude of
the maximum scattering angle [45].

Next, to understand what happens to light when it passes
through this volumetric sample, we define the complex field that
results from illuminating the thick sample, U �r�, as a sum of
two fields: U �r� � Ui�r� � Us�r�. Here, U i�r� is the field
“incident” upon the sample (i.e., from one LED) and U s�r� is
the resulting field that “scatters” off of the sample. We may insert
this decomposition into the scalar wave equation for light propa-
gating through an inhomogeneous medium and use Green’s
theorem to determine the scattered field as [11]

Us�r 0� �
Z

G�jr 0 − rj�V �r�U �r�dr: (2)

Here, G�jr 0 − rj� is the Green’s function connecting light scat-
tered from various sample locations, denoted by r, to an arbitrary
location r 0. V �r� is the scattering potential from Eq. (1). Since
U �r� is unknown at all sample locations, it is challenging to solve
Eq. (2). Instead, it is helpful to apply the first Born approximation,

which replaces U �r� in the integrand with Ui�r�. This approxi-
mation assumes that Ui�r� ≫ Us�r�. It is the first term in the
Born expansion that describes the scattering response of an
arbitrary sample [11]. It assumes a weakly scattering medium.
Specifically, the first Born approximation remains valid when
the relative index shift δn � jn�r� − nbj and sample thickness t
obey the relation, ktδn∕2 ≪ 1 [43]. We expect FPT to remain
quantitatively accurate with samples obeying this condition. By
including higher-order terms, the above framework may in prin-
ciple include samples with stronger scattering [46,47].

Our system sequentially illuminates the sample with an
LED array, which contains q � qx × qy sources positioned a large
distance l from the sample (in a uniform grid, with inter-LED
spacing c; see Fig. 1). It is helpful to label each LED with a
2D counter variable �jx ; jy�, where −qx∕2 ≤ jx ≤ qx∕2 and
−qy∕2 ≤ jy ≤ qy∕2, as well as a single counter variable j, where
1 ≤ j ≤ q. Assuming each LED acts as a spatially coherent and
quasi-monochromatic source (central wavelength λ) placed at a
large distance from the sample, the incident field takes the
form of a plane wave traveling at a variable angle such that
θjx � tan−1�jx · c∕l� and θjy � tan−1�jy · c∕l� with respect to
the x- and y-axes, respectively. We may express the jth field
incident upon the sample as

U �j�
i �r� � exp�1ikj · r�; (3)

where kj is the wave vector of the jth LED plane wave,

kj � �kjx ; kjy; kjz� � k
�
sin θjx ; sin θjy;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2 θjx − sin

2 θjy

q �
:

(4)

As θjx and θjy vary, kj will always assume values along a spheri-
cal shell in 3D �kx; ky; kz� space (i.e., the Ewald sphere), since the
value of kjz is a deterministic function of kjx and kjy.

After replacing U �r� in Eq. (2) with U �j�
i �r� from Eq. (3) and

additionally approximating the Green’s function G as a far-field
response, the following relationship emerges between the scatter-
ing potential V and the Fourier transform of the jth scattered
field, Û �j�

s �k�, in the far field [11]:

Û � j�
s �k� � V̂ �k − kj�: (5)

We refer to V̂ �k� as the k-space scattering potential, which is
the three-dimensional Fourier transform of V �r�, with k the scat-
tered wave vector in the far field. For simplicity, we have left out a
multiplicative pre-factor �−1iπ∕kz� on the right-hand side of
Eq. (5), and instead assume it is included within the function
V̂ for the remainder of this presentation. The field scattered
by the sample and viewed at a large distance, Û �j�

s �k�, is given
by the values along a specific manifold (or spherical “shell”)
of the k-space scattering potential, here written as V̂ �k − kj�.
We illustrate the geometric connection between V̂ �k − kj� and
Û �j�

s �k� for a 2D optical geometry in Fig. 2(b). The center of
the jth shell is defined by the incident wave vector, kj. For a given
shell center, each value of V̂ �k − kj� lies on a spherical surface at a
radial distance of jkj � k [see colored arcs in Fig. 2(b)]. As kj
varies with the changing LED illumination, the shell center
shifts along a second shell with the same radius [since kj is
itself constrained to lie on an Ewald sphere; see gray circle in
Fig. 2(b)].

Fig. 1. Setup for Fourier ptychographic tomography (FPT).
(a) Labeled diagram of the FPT microscope, including optical functions
of interest. (b) FPT captures multiple images under varied LED illumi-
nation. (c) A ptychography-inspired algorithm combines these images in
a 3D k-space representation of the complex sample. (d) FPT outputs a
3D tomographic map of the complex index of refraction of the sample.
Included images are experimental measurements from a starfish embryo
(real index component, threshold applied; see Fig. 7).
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The goal of DT is to determine all the complex values within
the volumetric function V̂ from a set of q scattered fields,
fÛ sgqj�1, which is often measured holographically [12,15].
Each 2D holographic measurement maps to the complex values
of V̂ along one 2D shell. The values from multiple measurements
[i.e., the multiple shells in Fig. 2(b)] can be combined to form a
k-space scattering potential estimate, V̂ e . Nearly all stationary
optical setups will yield only an estimate, since it is challenging
to measure data from the entire k-space scattering potential with-
out rotating the sample. Figures 1(c) and 2(c) display typical
measurable volumes, also termed a bandpass, from a limited-angle
illumination and detection setup. Once sampled, an inverse 3D
Fourier transform of the band-limited V̂ e�k� yields the desired
complex scattering potential estimate, V e�r�, which contains
the quantitative index of refraction.

In FPT, we do not measure the scattered fields holographically.
Instead, we use a standard microscope to detect image intensities
and apply a ptychographic phase-retrieval algorithm to solve for
the unknown complex potential. The scattered fields in Eq. (5)
are defined at the microscope objective back focal plane (i.e., its
Fourier plane), whose 2D coordinates k2D � �kx; ky� are Fourier
conjugate to the microscope focal plane coordinates �x; y�. If we
neglect the effect of the constant background plane wave term
(i.e., Ui in the sum U � Ui � Us), we may now write the
jth shifted field at our microscope back focal plane as
Û �j��k2D� � V̂ �k2D − kj2D; kz − kjz�. These new coordinates
highlight the 3D to 2D mapping from V̂ to Û , where again

kz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − k2x − k2y

q
is a deterministic function of k2D, and the

same applies between kjz and kj2D.

Each shifted, scattered field is then bandlimited by the micro-
scope aperture function, a�k2D�, before propagating to the
image plane. The limited extent of a�k2D� (defined by the imag-
ing system NA) sets the maximum extent of each shell along kx
and ky. The jth intensity image acquired by the detector is given
by the squared Fourier transform of the bandlimited field at the
microscope back focal plane:

g�x; y; j� � jF �V̂ �k2D − kj2D; kz − kjz� · a�k2D��j2: (6)

Here, F denotes a 2D Fourier transform with respect to k2D,
and we neglect the effects of magnification (for simplicity) by
assuming the image plane coordinates match the sample plane
coordinates, �x; y�. The goal of FPT is to determine the complex
3D function V̂ from the real, non-negative data matrix g�x; y; j�.
A final 3D Fourier transform of V̂ yields the desired scattering
potential, and subsequently the refractive index distribution, of
the thick sample.

B. FPT Reconstruction Algorithm

Equation (6) closely resembles the data matrix measured by FP
[40], but now the intensities are sampled from shells within a 3D
space (i.e., the curves in Fig. 2). We use an iterative reconstruction
procedure, mirroring that from FP [40], to “fill in” the k-space
scattering potential with data from each recorded intensity image.
Ptychography and FP require at least approximately 50%–60%
data redundancy (i.e., overlapping measurements in k-space) to
ensure the successful convergence of the phase retrieval process
[48]. With such a similar problem structure, FPT will also require
overlap between shell regions in 3D k-space. With one extra di-
mension, overlap is less frequent and more images are needed for
an accurate reconstruction. Both a smaller LED array pitch and a
larger array-sample distance along z increase the amount of
k-space overlap. An example cross section of FPT k-space overlap
is shown in Fig. 2(c). As we demonstrate experimentally, several
hundred images are sufficient for a complex reconstruction that
offers a 4 × increase in resolution along �x; y� and contains
approximately 30 unique axial slices. Additional overlap (i.e.,
more images across the same angular range) will increase robust-
ness to noise.

It is important to select the correct limits and discretization
of 3D k-space (i.e., the FOV and resolution of the complex
sample reconstruction). The maximum resolvable wave vector
along kx and ky is proportional to k�NAo �NAi�, where NAo

is the objective NA and NAi is maximum NA of LED illumina-
tion. This lateral spatial resolution limit matches FP [49]. The
maximum resolvable wave vector range along kz is also deter-
mined as a function of the objective and illumination NA as
kmax
z � k�2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −NA2

o

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −NA2

i

p
�. As shown in Ref. [12],

this relationship is easily derived from the geometry of the k-space
bandpass volume in Fig. 2. We typically specify the maximum
imaging range along the axial dimension, zmax, to approximately
match twice the expected sample thickness. This then sets the
discretization level along kz : Δkz � 2π∕zmax. The total number
of resolved slices along z is set by the ratio kmax

z ∕Δkz .
We now summarize the FPT reconstruction algorithm:

1. Initialize a discrete estimate of the unknown k-space scat-
tering potential, V̂ e�k�, using an appropriate 3D array size (see
above). In our experiments, we form a refocused light field with
the raw intensity image set and use its 3D Fourier transform for

Fig. 2. Mathematical summary of FPT. (a) The field from the jth
LED scatters through the sample and exits its top surface as Uj�x 0�
(in 2D). This field forms Û j�kx� at the microscope back focal plane,
where it is bandlimited by the microscope aperture a�kx� before propa-
gating to the image plane to form the jth sampled intensity image.
(b) Under the first Born approximation, each detected image is the
squared magnitude of the Fourier transform of one colored “shell” in
�kx ; kz� space. (c) By filling in this space with a ptychographic phase-
retrieval algorithm, FPT reconstructs the complex values within the finite
bandpass volume V̂ e�kx ; kz� (color indicates expected bowl overlap for
this example). The Fourier transform of this reconstruction yields our
complex refractive index map with resolutions Δx and Δz along
x and z.
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initialization [33]. However, we have noticed that simpler alter-
native initializers, such as the 3D Fourier transform of a single raw
image padded along all three dimensions or a 3D array containing
a constant value, also often lead to an accurate reconstruction.

2. For j � 1 to q images, compute the center coordinate, kj,
and select values along its associated shell (radius k, maximum
width 2k ·NAo). This selection process samples a discrete 2D
function, d̂ j�kx; ky�, from the 3D k-space volume. The selected
voxels must partially overlap with voxels from adjacent shells.
Currently, no interpolation is used to map voxels from the discrete
shell to pixels within d̂ j�kx; ky�.

3. Fourier transform d̂ j�kx; ky� to the image plane to create
d j�x; y� and constrain its amplitudes to match the measured am-
plitudes from the jth image. For our experiments, we use the
amplitude update form, d 0

j�x;y��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�x;y;j�p

·d j�x;y�∕jd j�x;y�j.
More advanced alternating projection-based updates are also
available [50].

4. Inverse 2D Fourier transform the image plane update,
d 0
j�x; y�, back to 2D k-space to form d̂ 0

j�kx; ky�. Use the values
of d̂ 0

j�kx; ky� to replace the voxel values of V̂ e�k� at locations
where voxel values were extracted in step 2.

5. Repeat steps 2–4 for all j � 1 to q images. This completes
one iteration of the FPT algorithm. Continue for a fixed number
of iterations, or until satisfying some error metric. At the end, 3D
inverse Fourier transform V̂ e�k� to recover the complex scattering
potential, V e�r�.

In practice, we also implement a pupil function recovery pro-
cedure [27] as we update each extracted shell from k-space, which
helps remove possible microscope aberrations. As with other
alternating projections-based ptychography solvers, the per itera-
tion cost of the above FPT algorithm is O�n log n�, using the
big-O notation. Additional details regarding algorithm robustness
and convergence are in Supplement 1.

4. RESULTS AND DISCUSSION

We experimentally verify our reconstruction technique using a
standard microscope outfitted with an LED array. The micro-
scope uses an infinity corrected objective lens (NAo � 0.4,
Olympus MPLN, 20 × ) and a digital detector containing
4.54 μm pixels (Prosilica GX 1920, 1936 × 1456 pixel count).
The LED array contains 31 × 31 surface-mounted elements
(model SMD3528, center wavelength λ � 632 nm, 20 nm
approximate bandwidth, 4 mm LED pitch, 150 μm active area
diameter). We position the LED array 135 mm beneath the
sample to create a maximum illumination NA of NAi � 0.41.
This leads to an effective lateral NA of NAo �NAi � 0.81
and a lateral resolution gain along �x; y� of slightly over a factor
of 2 (from a 1.6 μm minimum resolved spatial period in the raw
images to a 0.78 μm minimum resolved spatial period in the
reconstruction). The associated axial Nyquist resolution is com-
puted at 3.7 μm. We reconstruct samples across a total depth
range of approximately zmax � 110 μm, which is approximately
20 times larger than the stated objective lens DOF of 5.8 μm.

For most of the reconstructions presented below, we capture
and process q � 675 images from the same fixed pattern of
LEDs. Some LEDs from within the 31 × 31 array produce images
containing a shadow of the microscope back focal plane. We
do not use these LEDs so as to avoid certain reconstruction
artifacts. We typically use the following parameters for FPT

reconstruction: each raw image is cropped to 1000 × 1000 pixels,
the reconstruction voxel size is 0.39 μm × 0.39 μm × 3.7 μm for
Nyquist–Shannon rate sampling, the reconstruction array
contains approximately 2100 × 2100 × 30 voxels (110 μm total
depth), and the algorithm runs for 5 iterations. The first Born
approximation should remain valid across this total imaging
depth. The primarily transparent and somewhat sparse samples
that we test next justify the relatively large 110 μm depth that
we typically use.

A. Quantitative Verification

First, we verify the ability of FPT to improve the lateral image
resolution. The sample consists of 800 nm-diameter micro-
spheres (index of refraction ns � 1.59) immersed in oil (index
of refraction no � 1.515). We highlight a small group of these
microspheres in Fig. 3. The single raw image in Fig. 3(a) (gen-
erated from the center LED) cannot resolve the individual
spheres gathered in small clusters. Based upon the coherent
Sparrow limit for resolving two points (0.68λ∕NAo), this raw
image cannot resolve points that are closer than 1.1 μm.
After FPT reconstruction, we obtain the complex index of
refraction in Fig. 3(b), where we show the real component
of the recovered index. The FPT reconstruction along the
Δz � 0 slice clearly resolves the spheres within each cluster.
This 800 nm distance is close to the expected Sparrow limit
for the FPT reconstruction: 0.68λ∕�NAo �NAi� � 540 nm.
The ringing features around each sphere indicate a jinc-like
point-spread function, as expected theoretically from the circular
shape of the finite FPT bandpass along kx; ky [in Fig. 1(c)] for all
reconstructions. The resulting constructive interference forms
the undesired dip feature at the center of each cluster.

Second, we check the quantitative accuracy of FPT by
imaging microspheres that extend across more than just a few
reconstruction voxels. Figure 4 displays a reconstruction of
12 μm diameter microspheres (index of refraction ns � 1.59)
immersed in oil (index of refraction no � 1.58). We use the same
data capture and post-processing steps as in Fig. 3. Here, we
display a cropped section (200 × 200 × 15 voxels) of the full
3D reconstruction, which required 221 seconds of computation
time on a standard laptop. We again display the real (non-
absorptive) component of the recovered index across both a lateral
slice (along the Δz � 0 plane) and a vertical slice (along the
Δy � 25 μm plane). We also include detailed 1D traces along
the center of the vertical slice.

Three observations here are noteworthy. First, the measured
index shift approximately matches the expected shift of Δn �
ns − no � 0.01 across the entire bead, thus demonstrating
quantitatively accurate performance across this limited volume.
Currently, we only expect quantitative recovery for samples that

Fig. 3. Improved lateral resolution with FPT. (a) Single raw image of
0.8 μm microspheres. Beads within each cluster are not resolved.
(b) Refractive index (real) from Δz � 0 slice (1 of 30) of the FPT
reconstruction, resolving each microsphere.
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meet the first Born approximation condition (ktδn∕2 ≪ 1). This
12 μm microsphere sample approximately satisfies the condition
(ktδn∕2 � 0.59). Second, for any given one-dimensional trace
through a microsphere center, we would ideally expect a perfect
rect function (between Δn � 0 to Δn � 0.01). This is unlike 2D
FP, which reconstructs the phase delay though each sphere and
forms a parabolically shaped phase measurement (due to the vary-
ing thickness of each sphere along the optical axis). While FPT
resolves an approximate step function through the center of the
sphere along the lateral (x) dimension, it does not along the axial
(z) direction. This is caused by the limited volume of 3D k-space
that FPT measures (i.e., the limited bandpass or “missing cone”
of information surrounding the kz axis). While our stationary
sample/detector setup cannot avoid this missing cone, various
methods are available to computationally fill it in [51].

Finally, we compare FPT with two alternative techniques for
3D imaging in Fig. 4(c). First, we use the same dataset to perform
2D FP and then holographically refocus its reconstructed optical
field. We obtain this FP reconstruction using the same number of
images (q � 675) and follow the procedure in Ref. [40] after
focusing the objective lens at the axial center of the 12 μm micro-
spheres. The “out-of-focus noise” above and below the plane of
the microsphere, created by digital propagation of the complex
field via the angular spectrum method, noticeably hides its spheri-
cal shape. Second, we interpret the same raw image set as a light
field and perform light-field refocusing [5]. While the refocused
light field approximately resolves the outline of microsphere along
z, it does not offer a quantitative picture of the sample interior,
nor a measure of its complex index of refraction. The areas above
the microsphere are very bright due to its lensing effect (i.e., the
light field displays the optical intensity at each plane and thus
displays high energy where the microsphere focuses light).

We verify the axial resolution of FPT in Fig. 5 using a sample
containing two closely separated layers of 2 μm microspheres

(ns � 1.59) distributed across the surface of a glass slide with
oil in between (no � 1.515). The axial separation between the
two microsphere layers, measured from the center of each sphere
along z, is 3.9 μm [i.e., the separation between the microscope
slide surfaces is 5.9 μm; see Fig. 5(a)]. This almost matches
the expected axial resolution limit of 3.7 μm for the FPT
microscope.

Conventional microscope images of the sample, using the
center LED for illumination, are in Figs. 5(b) and 5(c). Here,
we focus on the center of the two layers (Δz � 0) as well as
the top microsphere layer (Δz � 1.9 μm) in an attempt to dis-
tinguish the two separate layers. At the top of each image (where
microspheres in the two layers overlap), it is especially hard to
resolve each sphere or determine which sphere is in a particular
layer. These challenges are due in part to the limited amount of
information contained within the optical intensity at each plane,
as opposed to the sample’s complex refractive index.

Next, we return the focus to the Δz � 0 plane and implement
FPT. We display three slices of our 3D scattering potential
reconstruction in Figs. 5(d)–5(f ). Here, we show the absolute val-
ues of the potential near the plane of the top layer, at the center,
and near the plane of the bottom layer. The originally indistin-
guishable spheres within the top and bottom layers are now clearly
resolved in each z-plane. Due to the system’s limited axial reso-
lution, the reconstruction at the middle plane (Δz � 0) still
shows the presence of spheres from both layers. Comparing
Figs. 5(b) and 5(c) with Figs. 5(e) and 5(f ), it is clear that the
axial resolution of FPT is sharper than manual refocusing. Not
only is each sphere layer distinguishable (as predicted theoreti-
cally), but we now also have quantitative information about
the sample’s complex refractive index.

Fig. 4. FPT quantitatively measures refractive index in 3D.
(a) Tomographic reconstruction of 12 μmmicrospheres in oil with lateral
(Δz � 0) slice on left, axial (Δy � 25 μm) slice on right, and one-
dimensional plots of index shift along both x and z. (b) Digitally propa-
gated FP reconstruction (middle) and refocused light field (right) created
from the same data. FPT (left) best matches the expected spherical bead
profile.

Fig. 5. Testing the axial resolution of FPT. (a) The sample contains
two layers of microspheres separated by a thin layer of oil. Raw images
(b) focused at the center of the two layers and (c) on the top layer do
not clearly resolve overlapping microspheres. (d)–(f ) Slices of the FPT
tomographic reconstruction, showing jΔnj, clearly resolve each sphere
within the two individual sphere layers.
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B. Biological Experiments

For our first biological demonstration, we reconstruct a
Trichinella spiralis parasite in 3D (see Fig. 6 and Visualization 1
for the complete tomogram). Since the worm extended along a
larger distance than the width of our detector, we performed
FPT twice and shifted the FOV between to capture the left
and right sides of the worm. We then merged each tomographic
reconstruction together with a simple averaging operation (match-
ing that from FP [40], 10% overlap). The total captured volume
here is 0.8 mm × 0.4 mm × 110 μm. If our setup included a dig-
ital detector that occupied the entire microscope FOV, the fixed
imaging volume would be 1.1 mm × 1.1 mm × 110 μm, and no
movement would be needed for this example.

A thresholded 3D reconstruction of the parasite index is at the
top of Fig. 6 (real component, threshold applied at Re�Δn� > 0.7
after jΔnj normalized to 1, under-sampled for clarity). The maxi-
mum real index variation across the tomogram before normaliza-
tion is approximately 0.06, which can be seen without
thresholding in Visualization 1. Its 3D curved trajectory is espe-
cially clear in the three separate z-slices of the reconstructed tomo-
gram in Fig. 6(a). The two downward bends in the parasite body
are lower than the upward bend in the middle, as well as at its
front and back ends. It is very challenging to resolve these depth-
dependent sample features by simply refocusing a standard micro-
scope. Figure 6(b) displays such an attempt, where the same three
z planes are brought into focus manually. Since the sample is pri-
marily transparent, in-focus areas in each standard image actually
exhibit minimal contrast, as marked by arrows in Fig. 6(b). We
plot the intensity through a fixed worm section (black dash) in
each of the three insets. The intensity contrast drops by over a

factor of 2 at in-focus locations, which will pose a significant
challenge to any depth segmentation technique (e.g., focal stack
deconvolution [4]). Since FPT effectively offers 3D phase con-
trast, points along the parasite within its reconstruction voxels
instead show maximum contrast, which enables direct segmenta-
tion via thresholding, as shown in the plots in Fig. 6(a).

For our second 3D biological example, we tomographically
reconstruct a starfish embryo at its larval stage [see Fig. 7(a)
and Visualization 2]. Here, we again show three different closely
spaced z-slices of the reconstructed scattering potential (Re�Δn�,
no thresholding applied). Each z-slice contains sample features
that are not present in the adjacent z-slices. For example, the large
oval structure in the upper left of the Δz � 0 plane, which is a
developing stomach, nearly completely disappears in the Δz �
−3.7 μm plane. Now at this z-slice, however, small structures,
which we expect to be developing mesenchyme cells [52] and
various epithelial cells [53], clearly appear in the lower right.
We confirm the presence of these structures with a differential
interference contrast (DIC) confocal microscope in Fig. 7(c)
(Zeiss LSM 510, 0.8 NA, λ � 633 nm, 0.2 μm scan step). A
DIC confocal scan is one of the few possible imaging options
for this thick and primarily transparent sample, but suffers from
a much smaller FOV (approximately 4% of the total effective
FPT FOV). It also does not quantitatively measure the refractive
index and requires mechanical scanning. Finally, we attempt to
refocus through the embryo using a standard microscope
(NA � 0.4) in Fig. 7(b). Both the particular plane of the devel-
oping stomach and even the presence of the mesenchyme cells are
completely missing from the refocused images. This is due to the
inability of the standard microscope to segment each particular
plane of interest, the inability to accurately reconstruct transpar-
ent structures without a phase contrast mechanism, and an
inferior lateral resolution with respect to FPT.

Fig. 6. Tomographic reconstruction of a Trichinella spiralis parasite.
(a) The worm’s curved trajectory resolved within various z planes.
(b) Refocusing the same distance to each respective plane does not clearly
distinguish each in-focus worm segment (marked by white arrows). Since
the worm is primarily transparent, in-focus worm sections exhibit min-
imal intensity contrast, presenting significant challenges for segmentation
(see intensity along each black dash in inset plots, where black dash
location is in-focus in left image). FPT, on the other hand, exhibits
maximum contrast at each worm voxel. See Visualization 1.

Fig. 7. 3D reconstruction of a starfish embryo at larval stage. (a) Three
different axial planes of the FPT tomogram show significant feature varia-
tion (e.g., protocol is completely missing from Δz � −3.7 μm plane, ex-
pected developing mesenchyme cells are only visible in Δz � −3.7 μm
plane). (b) Such axial information, and even certain structures (e.g., mes-
enchyme cells and various epithelia cells, marked in (a)) are completely
missing from standard microscope images after manual refocusing. (c) A
high-resolution DIC confocal scan of the Δz � −3.7 μm plane confirms
presence of structures of interest. See Visualization 2.
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5. CONCLUSIONS

We have performed diffraction tomography using intensity mea-
surements captured with a standard microscope and an LED
illuminator. The current system offers a lateral resolution of
approximately 400 nm at the Nyquist–Shannon sampling limit
(550 nm at the Sparrow limit and 800 nm full period limit)
and an axial resolution of 3.7 μm at the sampling limit. The maxi-
mum axial extent attempted thus far was 110 μm along z, and we
demonstrated quantitative measurement of the complex index of
refraction through several types of thick specimen with contigu-
ous features.

To improve the experimental setup, an alternative LED array
geometry that enables a higher angle of illumination will increase
the resolution. Also, we set the number of captured images here to
match the data redundancy required by ptychography [48].
However, we have observed that reconstructions are successful
with much fewer images than otherwise expected. Along with us-
ing a multiplexed illumination strategy [28], this may help speed
up the tomogram capture time. In addition, we did not explicitly
account for the finite LED spectral bandwidth or attempt poly-
chromatic capture, which can potentially provide additional
information about volumetric samples [32,35]. Finally, we set
our reconstruction range along the z-axis somewhat arbitrarily
at 110 μm. We expect the ability to further extend this axial range
in the future.

Subsequent work should also examine connections between
FPT, multi-slice-based techniques for ptychography [33,34],
and machine learning for 3D reconstruction [54]. While prior
work already specifies sample conditions under which the first
Born [43] and multi-slice [42] approximations remain accurate,
it is not yet clear if this translates directly to reconstructions that
require phase retrieval. By merging these approaches, it may be
possible to increase the domain of sample validity beyond what is
currently achieved by each technique independently.

Finally, FPT may also adopt alternative computational tools to
help improve ptychographic DT under the first Born approxima-
tion. We used the well-known alternating projections phase
retrieval update. Other solvers based upon convex optimization
[55] or alternative gradient descent techniques [56,57] may per-
form better in the presence of noise. Alternative approximations
besides first Born approximation (e.g., Rytov [15]) are also
available to simplify the Born series. In addition, the resolution
is currently impacted by the missing cone in 3D k-space, and
various methods are available to fill this cone in by assuming
the sample is positive only, sparse, or of a finite spatial support
[51]. Finally, methods exist to solve for the full Born series by
taking into account the effects of multiple scattering [46,47].
Connecting this type of multiple scattering solver to FPT may
aid with the reconstruction of increasingly turbid biological
samples.
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