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We report a novel generalized optical measurement system and computational approach to determine and correct
aberrations in optical systems. The system consists of a computational imaging method capable of reconstructing
an optical system’s pupil function by adapting overlapped Fourier coding to an incoherent imaging modality. It re-
covers the high-resolution image latent in an aberrated image via deconvolution. The deconvolution is made robust to
noise by using coded apertures to capture images. We term this method coded-aperture-based correction of aberration
obtained from overlapped Fourier coding and blur estimation (CACAO-FB). It is well-suited for various imaging
scenarios where aberration is present and where providing a spatially coherent illumination is very challenging or
impossible. We report the demonstration of CACAO-FB with a variety of samples including an in vivo imaging experi-
ment on the eye of a rhesus macaque to correct for its inherent aberration in the rendered retinal images. CACAO-FB
ultimately allows for an aberrated imaging system to achieve diffraction-limited performance over a wide field of view
by casting optical design complexity to computational algorithms in post-processing. © 2019 Optical Society of America
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1. INTRODUCTION

A perfect aberration-free optical lens simply does not exist in real-
ity. As such, all optical imaging systems constructed from a finite
number of optical surfaces are going to experience some level of
aberration issues. This simple fact underpins the extraordinary
amount of optical design efforts that have gone into the design
of optical imaging systems. In broad terms, optical imaging sys-
tem design is largely a complex process by which specialized op-
tical elements and their spatial relationships are chosen in order to
minimize aberrations and provide an acceptable image resolution
over a desired field of view (FOV) [1]. The more optical surfaces
available to the designer, the greater the extent the aberrations can
be minimized. However, this physical system improvement ap-
proach for minimizing aberrations has reached a point of dimin-
ishing returns in modern optics. Microscope objectives with 15
optical elements have become commercially available in recent
years [2], but it is unlikely that another order of magnitude of
optical surfaces will be supported within the confines of an ob-
jective in the foreseeable future. Moreover, this strategy for min-
imizing aberration is never expected to accomplish the task of
completely zeroing out aberrations. In other words, any optical
system’s spatial bandwidth product (SBP), which scales as the
product of system FOV and inverse resolution, can be expected

to remain a design bound dictated by the residual aberrations in
the system.

The issue of aberrations in simpler optical systems with few
optical surfaces is, unsurprisingly, more pronounced. The eye
is a very good example of such an optical system. While it does
a fair job of conveying external scenes onto our retinal layer, its
optical quality is actually quite poor. When a clinician desires a
high-resolution image of the retinal layer itself for diagnostic pur-
poses, the human eye lens and cornea aberrations would have to
be somehow corrected or compensated for. The prevalent
approach by which this is currently done is through the use of
adaptive optics (AO) [3,4]. This is in effect a sophisticated
way of physically correcting aberrations where complex physical
optical elements are used to compensate for the aberrations of the
lens and cornea. AO forms a guide star on the retina and uses a
wavefront detector (e.g., Shack–Hartmann sensor) and a compen-
sation device (e.g., deformable mirror) to correct for the aberra-
tions affecting the guide star and a small region around it as it is
under similar aberrations. This region is known as the isoplanatic
patch [5], and its size varies depending on the severity of aberra-
tions. To image a larger area beyond the isoplanatic patch, AO
needs to be raster-scanned [6]. Since AO correction is fast
(e.g.,<500 ms [7]), it is still possible to obtain images of multiple
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isoplanatic patches quickly. However, the AO system can be com-
plicated as it requires the active feedback loop between the wave-
front measurement device and the compensation device and
needs a separate guide star for the correction process [8].

Fourier ptychography (FP) circumvents the challenges of add-
ing more optical elements for improving an optical system’s per-
formance by recasting the problem of increasing the system’s
spatial bandwidth product (SBP) as a computational problem
that can be solved after image data have been acquired. Rather
than striving to get the highest-quality images possible through
an imaging system, FP acquires a controlled set of low-SBP
images, dynamically determines the system’s aberration character-
istics computationally, and reconstitutes a high-SBP, aberration-
corrected image from the original controlled image set [9–15]. FP
shares its roots with ptychography [16–18] and structured illumi-
nation microscopy (SIM) [19–21], which numerically expand the
SBP of the imaging system in the spatial and spatial frequency
domain, respectively, by capturing multiple images under distinct
illumination patterns and computationally synthesizing them into
a higher-SBP image. One way to view FP is to note its similarity
to synthetic aperture imaging [22–24]. In a standard FP micro-
scope system, images of the target are collected through a low-
numerical-aperture (NA) objective with the target illuminated
with a series of angularly varied planar or quasi-planar illumina-
tion. Viewed in the spatial frequency domain, each image repre-
sents a disc of information with its offset from the origin
determined by the illumination angle. As with synthetic aperture
synthesizing, we then stitch the data from the collected series in
the spatial frequency domain. Unlike synthetic aperture imaging,
we do not have direct knowledge of the phase relationships be-
tween each image data set. In FP, we employ phase retrieval and
the partial information overlap among the image set to converge
on the correct phase relationships during the stitching process [9].
At the end of the process, the constituted information in the spa-
tial frequency domain can be Fourier transformed to generate a
higher-resolution image of the target that retains the original FOV
as set by the objective. It has been demonstrated that a sub-rou-
tine can be weaved into the primary FP algorithm that will
dynamically determine the pupil function of the imaging system
[11]. In fact, the majority of existing FP algorithms incorporate
some versions of this aberration determination function to find
and subsequently correct out the aberrations from the processed
image [25–32]. This particular sub-discipline of FP has matured
to the level that it is even possible to use a very crude lens to
obtain high-quality images that are typically associated with
sophisticated imaging systems [33]—this drives home the fact
that correcting aberration computationally is a viable alternative
to physical correction.

The primary objective of this paper is to report a novel gen-
eralized optical measurement system and computational approach
to determine and correct aberrations in optical systems. This com-
putational approach is coupled to a general optical scheme de-
signed to efficiently collect the type of images required by the
computational approach. Currently, FP’s ability to determine
and correct aberration is limited to optical setups with a well-de-
fined, spatially coherent field on the sample plane [9,11,34–42].
We developed a computational imaging method capable of recon-
structing an optical system’s pupil function by adapting the FP’s
alternating projections as used in overlapped Fourier coding [10]
to an incoherent imaging modality, which overcomes the spatial

coherence requirement of the original pupil function recovery
procedure of FP. It can then recover the high-resolution image
latent in an aberrated image via deconvolution. The deconvolu-
tion is made robust to noise by using coded apertures to capture
images [43]. We term this method: coded-aperture-based correc-
tion of aberration obtained from overlapped Fourier coding and
blur estimation (CACAO-FB). It is well suited for various imag-
ing scenarios where aberration is present and where providing a
spatially coherent illumination is very challenging or impossible.
CACAO-FB ultimately allows for an aberrated imaging system to
achieve diffraction-limited performance over a wide FOV by cast-
ing optical design complexity to computational algorithms in
post-processing.

The removal of spatial coherence constraints is vitally impor-
tant in allowing us to apply computational aberration correction
to a broader number of imaging scenarios. These scenarios in-
clude: (1) optical systems where the illumination on a sample
is provided via a medium with unknown index variations; (2) op-
tical systems where space is so confined that it is not feasible to
employ optical propagation to create quasi-planar optical fields;
(3) optical systems where the optical field at the sample plane
is spatially incoherent by nature (e.g., fluorescence emission).

CACAO-FB is substantially different from other recent efforts
aimed at aberration compensation. Broadly speaking, these efforts
can be divided into two major categories: blind and heuristic
aberration recovery. Blind recovery minimizes a cost function,
typically an image sharpness metric or a maximum-likelihood
function, over a search space, usually the coefficient space of
Zernike orthonormal basis [44–49], to arrive at the optimal aber-
ration function. However, blind recovery is prone to converging
towards multiple local minima and requires the aberrated sample
image to be a complex field because blind aberration recovery
with an intensity-only sample image is extremely prone to noise
for any aberrations [45] other than simple ones such as a camera
motion blur or a defocus blur [50]. Heuristic recovery algorithms
rely on several assumptions, such as assuming that the captured
complex-field sample image has diffuse distribution in its Fourier
spectrum such that each sub-region in the Fourier domain enc-
odes the local aberrated wavefront information [51–54]. Thus,
heuristic methods are limited to specific types of samples, and
their performance is highly sample dependent.

CACAO-FB is capable of achieving a robust aberration recov-
ery performance in a generalized and broadly applicable format.
In Section 2, we describe the principle of CACAO-FB. In
Section 3, we report the demonstration of CACAO-FB with a
crude lens and an eye model as imaging systems of interest.
Finally, in Section 4, we demonstrate the potential of using
CACAO-FB for retinal imaging in an in vivo experiment on a
rhesus macaque’s eye and discuss the current challenges it needs
to address to become a viable alternative to other AO retinal im-
agers. We summarize our findings and discuss future directions in
Section 5.

2. PRINCIPLE OF CACAO-FB

To best understand the overall operation of CACAO-FB process-
ing, we start by examining the optical scheme (see Fig. 1).
Suppose we start with an unknown optical system of interest (tar-
get system). This target system consists of a lens (unknown lens)
placed approximately at its focal length in front of a target sample
(unknown sample). The sample is illuminated incoherently. For
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the sake of simplicity in this thought experiment, we will consider
the illumination to occur in the transmission mode. The
CACAO-FB system collects light from the target system using
relay lenses L1, L2, and L3, and an aperture mask in the pupil
plane, which is the conjugate plane of the target system’s pupil
with coordinates �u, v�, that can be modulated into different pat-
terns. Our objective is to resolve the sample at high resolution. It
should be clear from this target system description that our ability
to achieve the objective is confounded by the presence of the un-
known lens and its unknown aberrations. A good example of such
a system is the eye—the retinal layer is the unknown sample, and
the lens and cornea can be represented by the unknown lens.

From this thought experiment, we can see that, to accomplish
our objective, we would need to first determine the aberration
characteristics of the unknown lens and then use the information
to somehow correct out the aberration effects from the final ren-
dered image. CACAO-FB does this by using three primary com-
putational imaging algorithmic components that operate in
sequence: 1) local aberration recovery with blur estimation; 2) full
aberration recovery with a FP-based alternating projections algo-
rithm; and 3) latent image recovery by deconvolution with coded
apertures. The first two steps determine the target system’s aber-
rations, and the third step generates an aberration-corrected im-
age. This pipeline is summarized in Fig. 2. The sample plane,
which has coordinates �x, y�, is divided into small tiles within
which the aberration can be assumed to be spatially invariant,
and CACAO-FB processes each corresponding tile on its image
plane, which has coordinates �ξ, η�, to recover a high-resolution
image of the sample tile. In the following analysis, we focus our
attention to one tile t. CACAO-FB begins by capturing a series of
images with varying mask patterns in its pupil plane, which has
coordinates �u, v�. The patterns consist of two kinds: a set of small
circular apertures Wm�u, v�, which collectively spans the pupil of
the unknown lens, and a set of big apertures An�u, v�, which in-
cludes coded apertures and a full circular aperture with their
diameters equal to the unknown lens’s pupil’s size. m and n
are integers ranging from 1 to the total number of the respective
aperture. The images captured with Wm�u, v� are labeled as
im,t�ξ, η�, and they encode the local aberration of the unknown
lens’s pupil function in their point spread functions (PSF). The
blur estimation algorithm (Section 2.B) extracts these PSFs;

bm,t�ξ, η�. These intensity values of the spatially filtered pupil
function can be synthesized into the full pupil function
Pt�u, v� with an FP-based alternating projections algorithm
(Section 2.C). The images captured with An�u, v�, labeled
ϕn,t�ξ, η�, are processed with the reconstructed pupil function
and the knowledge of the mask patterns to generate the latent,
aberration-free image of the sample ot�x, y� (Section 2.D).

The next four sub-sections will explain the mathematical
model of the image acquisition process and the three imaging al-
gorithmic components in detail.

A. Image Acquisition Principle of CACAO-FB System

We consider a point on the unknown sample s�x, y� and how it
propagates to the camera plane to be imaged. On the
sample plane, a unit amplitude point source at �x0, y0� can be
described by

U 0�x, y; x0, y0� � δ�x − x0, y − y0�, (1)

where U 0�x, y; x0, y0� is the complex field of the point on the
sample plane, and δ�x − x0, y − y0� is the Dirac delta function de-
scribing the point located at �x0, y0�.

We then use Fresnel propagation to propagate it to the un-
known lens’s plane and apply the phase delay caused by the un-
known lens, assuming an idealized thin lens with the estimated
focal length f 0 [Eqs. (S2) and (S3) of Supplement 1]. Any dis-
crepancy from the ideal is incorporated into the pupil function
P�u, v; x0, y0�, which is usually a circular bandpass filter with a
uniform modulus and some phase modulation. Thus, the field
right after passing through the unknown lens is

UF �u, v; x0, y0� � P�u, v; x0, y0� exp
�
−j

2π

λf 0

�x0u� y0v�
�
,

(2)

where λ is the wavelength of the field and �u, v� are the coordi-
nates of both the plane right after the unknown lens and the
CACAO-FB system’s aperture plane as these planes are conjugate
to each other. Thus, we refer to the aperture plane as the
pupil plane. The spatially varying nature of a lens’s aberration
is captured by the pupil function’s dependence on �x0, y0�. We
divide our sample into small tiles of isoplanatic patches
(e.g., t � 1, 2, 3,…) and confine our analysis to one tiled region

Fig. 1. Optical architecture of CACAO-FB. The CACAO-FB system consists of three tube lenses (L1, L2, and L3) to relay the image from the target
system for analysis. The target system consists of an unknown lens and an unknown sample with spatially incoherent field. The CACAO-FB system has
access to the conjugate plane of the target system’s pupil, which can be arbitrarily modulated with binary patterns using a spatial light modulator. The
images captured by the CACAO-FB system are intensity only. f 0, f 1, f 2, and f 3 are the focal lengths of the unknown lens, L1, L2, and L3, respectively.
d is an arbitrary distance smaller than f 3.
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t on the sample plane that contains �x0, y0� and other points
in its vicinity such that the spatially varying aberration can be
assumed to be constant in the analysis that follows (i.e.,
P�u, v; x0, y0� � Pt�u, v�). This is a common strategy for process-
ing spatially variant aberration in wide-FOV imaging [55,56].
We can see from Eq. (2) that the field emerging from the un-
known lens is essentially its pupil function with additional phase
gradient term defined by the point source’s location on the
sample plane.

At the pupil plane, a user-defined aperture mask M �u, v� is
applied to produce

U 0
F �u, v; x0, y0� � M�u, v�Pt�u, v� exp

�
−j

2π

λf 0

�x0u� y0v�
�
,

(3)

where we dropped the constant factor CF �x0, y0�. After further
propagation to the camera plane [Eqs. (S5)–(S9) of
Supplement 1], we obtain the intensity pattern iPSF,t�ξ, η� that
describes the mapping of a point on the sample to the camera
plane as follows:

iPSF,t�ξ, η; x0, y0�

�
����F fM �u, v�Pt�u, v�g�ξ, η� � δ

�
ξ� x0

λf 0

, η� y0
λf 0

�����
2

� ht

�
ξ� x0

λf 0

, η� y0
λf 0

�
, (4)

where ht�ξ, η� � jFfM �u, v�Pt�u, v�g�ξ, η�j2 is the intensity of
the PSF of the combined system in Fig. 1 for a given aperture
mask M�u, v� and within the isoplanatic patch t. We observe
from Eq. (4) that PSFs for different point source locations are
related to each other by simple lateral shifts, such that an image
it�ξ, η� captured by this system of an unknown sample function
within the isoplanatic patch st�x, y� can be represented by

it�ξ, η� � ht�ξ, η� � jst�ξ, η�j2 � ht�ξ, η� � ot�ξ, η�, (5)

where ot�ξ, η� is the intensity of st�ξ, η�, � is the convolution op-
erator, and we ignore the coordinate scaling for the sake of sim-
plicity. This equation demonstrates that the image captured by
the detector is a convolution of the sample’s intensity field with
a PSF associated with the sub-region of the pupil function defined
by an arbitrary mask at the pupil plane. This insight allows us to

Fig. 2. Outline of CACAO-FB pipeline. (a) The captured images are broken into small tiles of isoplanatic patches (i.e., aberration is spatially invariant
within each tile). (b) Data acquisition and post-processing for estimating the pupil function Pt�u, v�. Limited-aperture images im,t�ξ, η� are captured with
small masks, Wm�u, v� applied at the pupil plane. Local PSFs bm,t�ξ, η� are determined by the blur estimation procedure, Algorithm 1. These PSFs are
synthesized into the full-aperture pupil function Pt�u, v� with Fourier-ptychography-based alternating projections algorithm, Algorithm 2. (c) Data
acquisition with big masks An�u, v� at the pupil plane. (d) The recovered Pt�u, v� from (b) and the big-aperture images ϕn,t�ξ, η� from (c) are used
for deconvolution (Algorithm 3) to recover the latent aberration-free intensity distribution of the sample ot�x, y�.
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capture images of the sample under the influence of PSFs that
originate from different sub-regions of the pupil. We have aper-
ture masks of varying shapes and sizes, mainly categorized into
small masks and big masks. Small masks sample small regions
of the pupil function to be used for reconstructing the pupil func-
tion, as will be described in detail in the following sections. Big
masks include a mask corresponding to the full pupil size and
several coded apertures that encode the pupil function to assist
in the latent image recovery by deconvolution. To avoid confu-
sion, we label themth small mask, its associated PSF in isoplanatic
patch t, and the image captured with it as Wm�u, v�, bm,t�ξ, η�,
and im,t�ξ, η�, respectively. The nth big mask (coded aperture or a
full aperture), its associated PSF, and the image captured with it
are labeled as An�u, v�, hn,t�ξ, η�, and ϕn,t�ξ, η�, respectively.

The CACAO-FB system captures im,t�ξ, η�s and ϕn,t�ξ, η�s in
the data acquisition process, and these data are relayed to post-
processing algorithms to recover ot�ξ, η�, the underlying aberra-
tion-free image of the sample. The algorithm pipeline begins with
the blur estimation algorithm using im,t�ξ, η�s as described below.
In all the following simulations, there is one full aperture and four
coded apertures An�u, v� with the diameter of 4.5 mm; 64 small
masksWm�u, v� with the diameter of 1 mm; an unknown lens L1
and L2 with the focal length of f 0 � f 1 � f 2 � 100 mm; a
tube lens with the focal length of f 3 � 200 mm; an image sensor
with the pixel size of 6.5 μm (3.25 μm effective pixel size); and a
spatially incoherent illumination with the wavelength of 520 nm.

B. Local Aberration Recovery with Blur Estimation

The blur function bm,t�ξ, η� associated with the small mask
Wm�u, v� applied to the pupil Pt�u, v� is also referred to as
the local PSF, and it contains valuable information about the tar-
get system’s pupil function that we wish to recover. The size of
Wm�u, v� is set small enough such that Wm�u, v� applied to a
region on Pt�u, v� shows a local phase map that resembles a linear
phase gradient, as shown in Fig. 3(b1). In such case, the associated
bm,t�ξ, η� approximates a diffraction-limited spot with a spatial
shift given by the phase gradient. Wm�u, v� applied to other re-
gions on Pt�u, v� may have bm,t�ξ, η�, whose shape deviates from
a spot if the masked region contains more severe aberrations, as

shown in Figs. 3(b2) and 3(b3). In general, the aberration at or
near the center of an imaging lens is minimal, and it becomes
severe near the edge of the aperture because the lens’s design
poorly approximates the parabolic shape away from the optical
axis [57]. Thus, the image captured with the center mask
i1,t�ξ, η� is mostly aberration free with its PSF defined by the
diffraction-limited spot associated with the mask’s aperture size.
Other im,t�ξ, η�s have the same frequency band limit as i1,t�ξ, η�
but are under the influence of additional aberration encapsulated
by their local PSFs bm,t�ξ, η�s.

We adopt an image-pair-based blur estimation algorithm
widely used in computational photography discipline to deter-
mine bm,t�ξ, η�. In this algorithm, one of the image pairs is as-
sumed to be blur free while the other is blurred [58,59]. The
blur kernel can be estimated by an iterative PSF estimation
method, which is iterative Tikhonov deconvolution [60] in the
Fourier domain, adopting the update scheme in Yuan’s blur es-
timation algorithm [58] and adjusting the step size to be propor-
tional to jI1,t�u, v�j∕jI 1,t�u, v�jmax for robustness to noise [61],
where I1,t�u, v� is the Fourier spectrum of i1,t�ξ, η�. The blur es-
timation process is described in Algorithm 1 as shown in Fig. 4.

The recovered bm,t�ξ, η�s are the intensity information of the
different masked pupil regions’ Fourier transforms. They can be
synthesized into the full pupil function Pt�u, v� using an FP-
based alternating projections algorithm, as described in the
following section.

C. Full Aberration Recovery with Fourier-
Ptychography-based Alternating Projections Algorithm

FP uses the alternating projections algorithm to synthesize a sam-
ple’s Fourier spectrum from a series of intensity images of the sam-
ple captured by scanning an aperture on its Fourier spectrum
[9,10]. In our implementation, the full pupil’s complex field
Pt�u, v� is the desired Fourier spectrum to be synthesized, and
the local PSFs bm,t�ξ, η�s are the aperture-scanned intensity im-
ages to be used for FP-based alternating projections, as shown in
the bottom half of Fig. 2(b). Therefore, reconstructing the pupil
function from a series of local PSFs’ intensity information in our
algorithm is completely analogous to reconstructing the complex

Fig. 3. Simulating image acquisition with different small masks at the pupil plane. (a) The full pupil function masked by the lens’s NA-limited aperture.
Differently masked regions of the pupil, (b1)–(b3), give rise to different blur kernels, (c1)–(c3), which allows us to capture images of the sample under the
influence of different PSFs. Only the phase is plotted for Pt�u, v� and Pm,t�u, v�s, and their apertures are marked by the black boundaries. W 1�u, v�,
W 45�u, v�, and W 52�u, v� are three small masks from a spiraling-out scanning sequence.
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spatial spectrum of a sample from a series of its low-passed images.
The FP-based alternating projections algorithm is Algorithm 2,
and it is described in Fig. 5.

The FP-based alternating projections algorithm requires that
the scanned apertures during image acquisition have at least 30%
overlap [62] for successful phase retrieval. Thus, the updating
bm,t�ξ, η�s in Algorithm 2 are ordered in a spiral-out pattern, each
having an associated aperture Wm�u, v� that partially overlaps
(40% by area) with the previous one’s aperture. The influence
of the overlap on the reconstruction is illustrated in Fig. S1 of
Supplement 1. For the simulated pupil diameter of 4.5 mm, there
are 64 Wm�u, v�s of 1 mm diameter to span the pupil with 40%
overlap.

We simulate the image acquisition by an aberrated imaging
system and our pupil function reconstruction process in Fig. 6.
Algorithms 1 and 2 are able to estimate the local PSFs from the 64
images captured with the small masks Wm�u, v� [Fig. 6(c))], and
they reconstruct the complex pupil function Pt�u, v� successfully
[Fig. 6(e)]. A simple Fourier transformation of Pt�u, v� generates

the PSF of the aberrated imaging system. On a Macbook Pro with
2.5 GHz Intel Core i7 and 16 GB of RAM, it takes 2 min for
Algorithm 1 and 20 s for Algorithm 2 to operate on the 64 images
(1000 by 1000 pixels) taken withWm�u, v�. To gauge our meth-
od’s performance among other computational blur estimation
methods, we attempt PSF reconstruction with two blind decon-
volution algorithms. One is MATLAB’s deconvblind, which is a
standard blind deconvolution algorithm based on the accelerated,
damped Richardson–Lucy algorithm, and the other is the state-
of-the-art blind blur kernel recovery method based on variational
Bayesian approach by Fergus et al. [63,64]. They both operate on
a single blurred image [Fig. 6(d)] to simultaneously extract the
blur function and the latent image [Fig. 6(f )]. For our purpose,
we compare the reconstructed PSFs to gauge the performance. As
shown in Fig. 6(f ), the reconstructed blur kernels by MATLAB
and Fergus et al. both show poor fidelity to the true PSF. This
clearly demonstrates the effectiveness of our algorithm pipeline in
reconstructing a complicated PSF, which would otherwise be
impossible to recover by a blind deconvolution method. The

Fig. 4. Flowchart of Algorithm 1: blur estimation algorithm for determining local PSFs from images captured with small apertures Wm,t�u, v�.

Fig. 5. Flowchart of Algorithm 2: Fourier-ptychography-based alternating projections algorithm for reconstructing the unknown lens’s pupil function
Pt�u, v�.
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absolute limit of our aberration reconstruction method, assuming
an unlimited photon budget, is essentially determined by the
number of pixels inside the defined full aperture. However, in
real-life settings with limited photon budget and a dynamic sam-
ple, the smallest subaperture we can use to segment the full aper-
ture is determined by the allowable exposure time and the shot-
noise-limited condition of the camera. One has to consider the
number of photons required by the camera for the signal to over-
come the camera noise and the length of exposure permissible to
capture a static image of the sample.

D. Latent Image Recovery by Deconvolution with
Coded Apertures

With the knowledge of the pupil function obtained from
Algorithms 1 and 2, it is possible to recover ot�x, y� from the
aberrated image ϕt�ξ, η� taken with the full pupil aperture. In
the Fourier domain, the image’s spectrum is represented as
Φt�u, v� � Ht�u, v�Ot�u, v�, whereHt�u, v� andOt�u, v� are the
spatial spectrum of ht�ξ, η� and ot�x, y�, respectively. Ht�u, v� is
also called the optical transfer function (OTF) of the optical sys-
tem and, by Fourier relation, is an auto-correlation of the pupil
function Pt�u, v�. In the presence of severe aberrations, the OTF
may have values at or close to zero for many spatial frequency
regions within the bandpass, as shown in Fig. 7. These are
due to the phase gradients with opposite slopes found in an aber-
rated pupil function, which may produce values at or close to zero
in the auto-correlation process. Thus, the division of Φt�u, v� by
Ht�u, v� during deconvolution will amplify noise at these spatial
frequency regions since the information there has been lost in the
image acquisition process. This is an ill-posed inverse problem.

There are several deconvolution methods that attempt to ad-
dress the ill-posed problem by using a regularizer [60] or a priori
knowledge of the sample, such as by assuming sparsity in its total
variation [65,66]. However, due to their inherent assumptions,

these methods work well only on a limited range of samples,
and the parameters defining the a priori knowledge need to be
manually tuned to produce successful results. Fundamentally,
they do not have the information in the spatial frequency regions
where the OTF is zero, and the a priori knowledge attempts to fill
in the missing gaps. Wavefront coding using a phase mask in the
Fourier plane has been demonstrated to remove the null regions
in the OTF such that a subsequent deconvolution by the pre-
calibrated PSF can recover the latent image [67–70]. We adopt
a similar method called coded aperture proposed by Zhou and
Nayar [43] that uses an amplitude mask in the Fourier domain
to achieve the same goal. With the amplitude-modulating SLM
already in the optical system, using the amplitude mask over a
phase mask is preferred. Combined with the knowledge of the
pupil function reconstructed by Algorithms 1 and 2, no a priori
knowledge is required to recover the latent image via deconvolu-
tion. A coded aperture designed by Zhou and Nayar at the pupil
plane with a defocus aberration can generate a PSF whose OTF
does not have zero values within its NA-limited bandpass. The
particular coded aperture is generated by a genetic algorithm that
searches for a binary mask pattern that maximizes its OTF’s spa-
tial frequency content’s modulus. The optimum aperture’s pattern
is different depending on the amount of noise in the imaging con-
dition. We choose the pattern as shown in Fig. 7 since it performs
well across various noise levels [43].

The pupil function in our imaging scenario does not only con-
sist of defocus, as the imaging lenses have severe aberrations.
Therefore, our pupil function can have an unsymmetrical phase
profile unlike the defocus aberration’s symmetric bullseye phase
profile. Thus, rotating the coded aperture can generate PSFs with
different spatial frequency distribution, resulting in a different
PSF shape beyond the mere rotation of the PSF. Therefore, in
the data capturing procedure, we capture a series of images
with a sequence of big masks An�u, v� consisting of four coded

Fig. 6. Simulation of our pupil function recovery procedure and a comparison with blind deconvolution algorithms. (a) The Siemens star pattern used
in the simulation. (b) The system’s pupil function and the associated PSF. (c) A series of images im,t�ξ, η�s captured with small masksWm�u, v� applied to
the pupil function. (d) An image captured with the full-pupil-sized mask An�u, v� on the pupil function, which simulates the general imaging scenario by
an aberrated imaging system. (e) The system’s pupil function and PSF recovered by our procedure. They show high fidelity to the original functions in (b).
(f ) Blur functions recovered by MATLAB’s and Fergus et al.’s blind deconvolution algorithm, respectively. They both show poor reconstructions
compared to the recovered PSF in (e).
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apertures and a standard circular aperture at the pupil plane, as
represented in Fig. 2(c). This ensures that we obtain all spatial
frequency information within the NA-limited bandpass. The
PSF associated with each An�u, v� applied to Pt�u, v� is easily
obtained by hn,t�ξ, η� � jF −1fAn�u, v�Pt�u, v�g�ξ, η�j2 and its
OTF by Hn,t�u, v� � F fhn,t�ξ, η�g�u, v�. With the measured
full and coded aperture images ϕn,t�ξ, η�s and the knowledge

of the OTFs, we perform a combined deconvolution using iter-
ative Tikhonov regularization, similar to Algorithm 1, to recover
the object’s intensity distribution ot�x, y�, as described by
Algorithm 3 in Fig. 8 and represented in Fig. 2(d).

A simulated deconvolution procedure with the coded aperture
on a Siemens star pattern is shown in Fig. 7. The combined OTF
of a circular aperture and the coded aperture at four rotation

Fig. 7. Simulation that demonstrates the benefit of coded-aperture-based deconvolution. (a1)–(a5) Masked pupil functions obtained by masking the
same pupil function with the full circular aperture and coded apertures under different rotation angles (0°, 45°, 90°, 135°), their associated OTFs along
one spatial frequency axis, and captured images. Each coded aperture is able to shift the null regions of the OTF to different locations. (b) Comparison
between the OTF of a circular-aperture-masked pupil function and the summed OTFs of the circular- and coded-aperture-masked pupil functions. Null
regions in the frequency spectrum are mitigated in the summed OTF, which allows all the frequency content of the sample within the band limit to be
captured with the imaging system. The OTF of an ideal pupil function is also plotted. (c1) Deconvolved image with only a circular aperture shows poor
recovery with artifacts corresponding to the missing frequency contents in the OTF’s null regions. (c2) A recovered image using one coded aperture only.
Reconstruction is better than (c1) but still has some artifacts. (c3) A recovered image using circular and multiple coded apertures is free of artifacts since it
does not have missing frequency contents.

Fig. 8. Flowchart of Algorithm 3: iterative Tikhonov regularization for recovering the latent sample image ot�x, y� from the aberrated images. Here,
Φn,t�u, v� � F fϕn,t�ξ, η�g�u, v�.
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angles is able to eliminate the null regions found in the circular-
aperture-only OTF and thus produce a superior deconvolution
result. The deconvolution performance across different frequency
components is correlated to the combined OTF’s modulus.
We observe that the signal-to-noise ratio (SNR) of at least 40
in the initial aberrated image produces a deconvolution result
with minimal artifacts. On a Macbook Pro with 2.5 GHz
Intel Core i7 and 16 GB of RAM, it takes 2 s for Algorithm
3 to process the 5 images (1000 by 1000 pixels) taken with
An�u, v� (one full aperture, four coded apertures) to generate
the deconvolution result.

3. EXPERIMENTAL DEMONSTRATION ON
ARTIFICIAL SAMPLES

A. Demonstration of CACAO-FB on a Crude Lens

The CACAO-FB prototype system’s setup is simple, as shown in
Fig. 9. It consists of a pair of 2 inch, f � 100 mm achromatic
doublets (AC508-100-A from Thorlabs) to relay the surface of an
imaging lens of interest to the surface of the ferroelectric liquid-
crystal-on-silicon (LCOS) spatial light modulator (SLM) (SXGA-
3DM-HB from 4DD). A polarized beam splitter (PBS) (PBS251
from Thorlabs) lies in front of the SLM to enable binary modu-
lation of the SLM. A polarizer (LPVISE100-A from Thorlabs) is
placed after the PBS to further filter the polarized light to com-
pensate for the PBS’s low extinction ratio in reflection. A f �
200 mm tube lens (TTL200-A from Thorlabs) Fourier trans-
forms the modulated light and images it on a sCMOS camera
(PCOedge 5.5 CL from PCO). To determine the orientation
of the SLM with respect to the Fourier space in our computa-
tional process, we us a phase-only target, such as a microbead sam-
ple, illuminated by a collimated laser source to perform an
overlapped-Fourier-coding phase retrieval [10]. With the correct
orientation, the reconstructed complex field should have the ex-
pected amplitude and phase. The imaging system to be surveyed
is placed in front of the CACAO-FB system at the first relay lens’s
focal length. The imaging system consists of a crude lens and a
sample it is supposed to image. The crude lens in our experiment
is a �6D trial lens (26 mm diameter, f � 130 mm) from an

inexpensive trial lens set (TOWOO TW-104 TRIAL LENS
SET). A resolution target is placed at less than the lens’s focal
length away to introduce more aberration into the system.
The sample is flood-illuminated by a monochromatic LED light
source (520 nm, UHP-Microscope-LED-520 from Prizmatix) fil-
tered with a 10 nm bandpass filter.

The relayed lens surface is modulated with various binary pat-
terns by the SLM. The SLM displays a full aperture (5.5 mm
diameter), a coded aperture rotated at 0°, 45°, 90°, and 135° with
the maximum diameter matching the full aperture, and a series of
limited apertures (1 mm diameter) shifted to different positions in
a spiraling-out pattern within the full aperture dimension. The
camera’s exposure is triggered by the SLM for synchronization.
Another trigger signal for enabling the camera to begin a capture
sequence is provided by a data acquisition board (NI ELVIS II
from National Instrument), which a user can control with
MATLAB. Multiple images for each SLM aperture are captured
and summed together to increase their signal-to-noise ratio
(SNR). The full-aperture image has SNR � 51, with other
aperture-scanned images having SNR approximately proportional
to the square root of their relative aperture area. SNR is estimated
by calculating the mean and variance values in a uniformly bright
patch on the image.

To quantify the resolution performance of CACAO-FB, we
image a Siemens star pattern with the crude �6D lens. The pat-
tern consists of 40 line pairs radiating from the center such that
the periodicity along a circle increases with increasing radius. The
smallest circle along which the periodic structure is barely resolv-
able determines the resolution limit of the optical system [71]. For
the focal length of 130 mm, the aperture diameter of 5.5 mm,
and the illumination wavelength of 520 nm, the expected reso-
lution is between λ∕NA � 24.6 μm (coherent) and λ∕�2NA� �
12.3 μm (incoherent) periodicity, defined by the spatial fre-
quency cutoff in the coherent and incoherent transfer functions,
respectively. As shown in Fig. 10, CACAO-FB can resolve fea-
tures up to 19.6 μm periodicity, which is within the expected res-
olution limit.

The �6D lens is expected to have poor imaging performance
that varies across its FOV since it is an inexpensive single element

Fig. 9. Experimental setup of imaging a sample with a crude lens (i.e., unknown lens). Sample is illuminated by a monochromatic LED (520 nm), and
the lens’s surface is imaged onto the SLM by a 1∶1 lens relay. The part of light modulated by the SLM is reflected by the PBS and is further filtered by a
polarizer to account for the PBS’s low extinction ratio in reflection (1:20). The pupil-modulated image of the sample is captured on the sCMOS camera.
L, lens; P, polarizer; PBS, polarizing beam splitter.
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lens. We image a sample slide consisting of an array of USAF
targets and select three tiled regions, each containing a USAF tar-
get pattern, to demonstrate CACAO-FB’s ability to address spa-
tially variant aberration in its latent image recovery procedure. As
shown in Fig. 11, the recovered PSFs in the three different regions
are drastically different, which demonstrates the spatially variant
nature of the aberration. Deconvolving each region with the cor-
responding PSF can successfully recover the latent image. The
expected resolution limits as calculated above correspond to a
range between Group 5 Element 3 (24.8 μm periodicity) and
Group 6 Element 3 (12.4 μm periodicity). Features up to
Group 5 Element 5 (19.68 μm periodicity) are resolved after

deconvolution as shown in Fig. 11, which matches closely with
the resolution determined by the Siemens star pattern.

B. Demonstration of CACAO-FB on an Eye Model

We use an eye model from Ocular Instruments to simulate an
in vivo retinal imaging experiment. We embed a cut-out USAF
resolution target (2015a USAF from Ready Optics) on the mod-
el’s retina and fill the model’s chamber with de-ionized water,
as shown in Fig. 12. We make adjustments to our CACAO-FB
system as shown in Fig. 13 to accommodate the different im-
aging scenario. First, it has to illuminate the retina in a reflection
geometry via the same optical path as imaging. A polarized beam

Fig. 10. Resolution performance measured by imaging a Siemens star target. (a) A crude lens has optical aberration that prevents resolving the Siemens
star’s features. (b) CACAO-FB is able to computationally remove the aberration and resolve 19.6 μm periodicity feature size, which lies between the
coherent and incoherent resolution limit given by the focal length of 130 mm, the aperture diameter of 5.5 mm, and the illumination wavelength of
520 nm. (c) Pupil function recovered by CACAO-FB used for removing the aberration. (d) The PSF associated with the pupil function. (e) Intensity
values from the circular traces on (a) and (b) that correspond to the minimum resolvable feature size of 19.6 μm periodicity. The Siemens star’s spokes are
not visible in the raw image’s trace, whereas 40 cycles are clearly resolvable in the deconvolved result’s trace.

Fig. 11. Spatially varying aberration compensation result on a grid ofUSAF target. (a) The full FOV captured by our camera with the full circular aperture
at 5.5 mm displayed on the SLM. Each small region denoted by (b), (c), and (d) had a different aberration map as indicated by varying pupil function and
PSFs. Spatially varying aberration is adequately compensated for in post-processing as shown by the deconvolution results (b2), (c2), and (d2).
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splitter (PBS) is used to provide illumination such that the specu-
lar reflection from the eye’s cornea, which mostly maintains the
s polarization from the PBS, is filtered out of the imaging opti-
cal path. The scattered light from the retina is depolarized and
can partially transmit through the PBS. The light source is a
fiber-coupled laser diode (520 nm) (NUGM01T from DTR’s
Laser Shop), which is made spatially incoherent by propagating
through a 111 m long, 600 μm core diameter multimode fiber
(FP600URT from Thorlabs), following the method in Ref. [72].
The laser diode is triggered such that it is on only during camera
exposure. Images are captured at 50 Hz, ensuring that the flashing
illumination’s frequency lies outside of the range that can cause
photosensitive epilepsy in humans (i.e., between 15 and 20 Hz
[73]). We add a pupil camera that outputs the image of the eye’s
pupil with fiduciary marks for aligning the eye’s pupil with our
SLM. Finally, a motion-reference camera (MRC) that has the

identical optical path as the encoded-image camera (EIC) aside
from pupil modulation by SLM is added to the system to account
for an in vivo eye’s motion between image frames. The amount
of light split between the MRC and EIC can be controlled by
the PBS and a quarter-wave plate before the SLM.

In Fig. 14, the recovered images show severe spatially varying
aberration of the eye model but good deconvolution performance
throughout the FOV, nonetheless. The tile size is set such that it is
the biggest tile that could produce an aberration-free image, judged
visually. The full aperture in this scenario had a 4.5 mm diameter,
and its associated aberrated image had a SNR of 126.

In this imaging scenario, the blur kernels of the limited-
aperture images had a significant impact on the deconvolution
result, as shown in Fig. 15. The aberration of the eye model
was severe such that the retrieved blur kernels of the limited-
aperture images had distinct shapes in addition to lateral shifts.

Fig. 12. Eye model with a USAF target embedded on the retinal plane. (a) A cut-out piece of glass of USAF target is attached on the retina of the eye
model. The lid simulates the cornea and also houses a lens element behind it. (b) The model is filled with water with no air bubbles in its optical path.
(c) The water-filled model is secured by screwing it in its case.

Fig. 13. Experimental setup of imaging an eye model and an in vivo eye. Illumination is provided by a fiber-coupled laser diode (520 nm), and the eye’s
pupil is imaged onto the SLM by a 1∶1 lens relay. The sample is slightly defocused from the focal length of the crude lens to add additional aberration into
the system. Pupil alignment camera provides fiduciary to the user for adequate alignment of the pupil on the SLM. PBS2 helps with removing corneal
reflection. The motion-reference camera is synchronized with encoded-image camera to capture images not modulated by the SLM. BS, beam splitter; L,
lens; M, mirror; P, polarizer; PBS, polarized beam splitter; QWP, quarter-wave plate.
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We observe a much better deconvolution result with the re-
constructed pupil that takes blur kernels’ shapes into account
compared to the one that does not. The latter is analogous to
Shack–Hartmann wavefront sensing method, which only identi-
fies the centroid of each blur kernel to estimate the aberration.
Thus, this demonstrates the importance of the blur kernel esti-
mation step in our algorithm and the distinct difference of our
aberration reconstruction from other wavefront sensing methods.

4. ADAPTING CACAO-FB TO AN IN VIVO
EXPERIMENT ON THE EYE OF A RHESUS
MACAQUE

The same setup as in Section 3.B is used for the in vivo experi-
ment on a rhesus macaque’s eye. The animal is anesthetized with
8–10 mg/kg ketamine and 0.02 mg/kg dexdomitor IM. Two
drops of tropicamide (0.5%–1%) are placed on the eye to dilate
the pupil. To keep the eye open for imaging, a sanitized speculum

Fig. 14. CACAO-FB result of imaging the USAF target in the eye model. (a) Raw image (2560 × 1080 pixels) averaged over 12 frames captured with
the full circular aperture at 4.5 mm. The pupil function and PSF in each boxed region show the spatially varying aberration. (b)–(d) Deconvolution results
show sharp features of the USAF target. The uneven background is from the rough surface of the eye model’s retina.

Fig. 15. Showing the importance of masked pupil kernel shape determination for successful deconvolution. (a1)–(a3) Limited PSFs determined only
by considering their centroids. (b) Recovered aberration and deconvolution result obtained with centroid-only limited PSFs. Some features of USAF are
distorted. (c1)–(c3) Limited PSFs determined with the blur estimation algorithm. (d) Recovered aberration and deconvolution result obtained with the
blur-estimated local PSFs. No distortions in the image are present, and more features of the USAF target are resolved.
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is placed between the eyelids. A topical anesthetic (proparacaine
0.5%) is applied to the eye to prevent any irritation from the
speculum placement. A rigid gas permeable lens is placed on
the eye to ensure that the cornea stays moist throughout imaging.
The light intensity is kept below a level of 50 mW∕cm2 on the
retina in accordance with ANSI recommended safe light dosage.

Due to the safety limitation on the illumination power, the
captured images of the retina have low SNR (e.g., the full-
aperture image has SNR � 7.5). We increase the SNR by
capturing multiple redundant frames [213 frames for An�u, v�s,
4 frames for Wm�u, v�s] and adding them together (Fig. S3 of
Supplement 1). Thus, a long sequence of images (∼45 s) has to
be captured, and these images with weak retinal signals have to
be registered for motion prior to CACAO-FB since the eye has
residual motion even under anesthesia. Due to a long averaging
window, aberration of high temporal frequency is washed out,
but we still expect to be able to resolve the photoreceptors, albeit
at a lower contrast [7]. Motion registration includes both transla-
tion and rotation, and these operations need to be done such that
they do not apply any spatial filter that may alter the images’ spatial
frequency spectra. Rotation is performed with fast discrete sinc-
interpolation [74], which is a series of Fourier transform operations
that can be accelerated by GPU programming. The frames from
the motion-reference camera are used for the registration process
(Fig. S2 of Supplement 1 and Visualization 1). A center region
with half the dimensions of the full frame is selected from one
of the frames as a template for registration. The normalized
cross-correlation (NCC) value is found between the template and
each frame [75] for every rotation angle (−1.5 to 1.5 deg, 0.0015 deg
step size). The set of rotation angle and lateral shift values that pro-
duces the maximumNCC value at a pixel resolution for each frame
corresponds to themotion registration parameters for that frame and
the corresponding encoded-image camera’s frame. The registration
parameters for all the frames are applied to the images of the
encoded-image camera, and the images are grouped by different
apertures to be summed together (Fig. S3 of Supplement 1).

The deconvolution result is shown in Fig. 16. Although the
sensor size of 2560 × 2160 pixels is used for capturing raw images,
the resultant averaged images are only 1262 × 1614 pixels after

the motion registration. The input full-aperture image had
SNR � 109. Photoreceptors are much better resolved after aber-
ration removal. We expect the entire visible region to have an even
spread of photoreceptors, but we observe well-resolved photore-
ceptors mostly in the brighter regions. This may be due to the
lower SNR in the darker regions leading to a poorer deconvolu-
tion result. We cannot capture more frames of the retina to fur-
ther increase the SNR because the animal’s eye’s gaze drifts over
time and the original visible patch of the retina is shifted out of
our system’s FOV. Furthermore, non-uniform specular reflections
from the retina add noise to part of the captured data, leading to
sub-optimal latent image recovery by the CACAO-FB algorithm
pipeline.

5. DISCUSSION

We developed a novel method to characterize the aberration of
an imaging system and recover an aberration-free latent image
of an underlying sample in post-processing. It does not require
the coherent illumination necessary in other computational,
aberration-compensating imaging methods. It does not need sep-
arate wavefront detection and correction devices found in many
conventional adaptive optics systems, as the hardware complex-
ities are off-loaded to the software regime, which can harness the
ever-increasing computational power. Its principle is based on in-
coherent imaging, which obviates sensitivity issues such as phase
fluctuations and incident angles associated with coherent imaging
and allows for characterizing an integrated optical system where
the sample plane is only accessible via the target system’s lens. Our
demonstrations of CACAO-FB on sub-optimal lenses in bench-
top and in vivo experiments show its viability in a broad range of
imaging scenarios. Its simple hardware setup is also a key advan-
tage over other aberration-correction methods that may allow for
its wide adoption.

More severe aberration can be addressed readily by shrinking
the scanned aperture size on the SLM so that the aberration
within each windowed pupil function remains low order. This
comes at the expense of the acquisition speed as more images need
to be captured to cover the same pupil diameter.

Fig. 16. CACAO-FB result from imaging an in vivo eye of a rhesus macaque. (a) Raw image averaged over 213 frames captured with 4.5 mm full
circular aperture. (b) Deconvolution result using the (c) pupil function reconstructed by CACAO-FB procedure. (d) PSF associated with the pupil
function.
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If the masks on the pupil are shrunk smaller with no overlap,
this pupil masking process becomes a Shack–Hartmann (SH)
sensing method. This illustrates the key advantages of our scheme
over a SH sensor: using bigger masks allows for fewer image ac-
quisitions and increases the images’ SNR. A bigger mask of an
aberrated pupil no longer encodes for a simple shifted spot in
the spatial domain as would be the case for a SH sensor but rather
a blur kernel as shown in Fig. 3. Therefore, reconstructing the
blur kernels of the limited aperture images is critical for
CACAO-FB’s performance, as is demonstrated in Fig. 15.

Using an aperture mask in the Fourier plane discards a
significant amount of photons in the image acquisition process.
One possible way to improve the photon efficiency of our system
would be to use a phase mask instead of an amplitude mask to
code the Fourier plane as has been demonstrated in Ref. [70] to
remove nulls in the OTF of an aberrated imaging system.

Although the recovered retinal image in Section 4 is not on par
with what one can achieve with a typical AO retinal imager, it
showcases the proof of concept of using CACAO-FB to correct
for aberrations in a general optical system. There are several chal-
lenges of imaging an in vivo eye that can be addressed in future
works to allow CACAO-FB to be a viable alternative to AO reti-
nal imagers. First, increasing the SNR by averaging multiple reti-
nal images of the rhesus macaque’s eye in vivo is challenging as its
gaze continues to drift even under general anesthesia. There is a
finite number of frames we can capture before the original patch
of retina shifts out of our system’s FOV. Imaging a human subject
would be less susceptible to this issue as an operator can instruct
the subject to focus on a target and maintain the same patch of the
retina within the system’s FOV as done in Ref. [7]. The small
lateral shifts between captured frames due to the eye’s saccade
can be digitally registered prior to averaging. Using a different
wavelength invisible to the eye will allow the subject to maintain
his/her gaze throughout an extended acquisition time. Second,
non-uniform specular reflections from the retinal layer corrupt
the captured images. The flood illumination provided on the
retina through the pupil does not have sufficient angular coverage
to even out the specular reflections such that some images cap-
tured with a small aperture contained specular reflections while
others did not. A flood illumination with a wider divergence angle
can mitigate this problem.

On the other hand, our method will be able to provide a
readily viable solution for imaging static targets such as wide
FOV imaging of fluorescent samples under sample- and system-
induced aberrations since the fluorescent signals are inherently
spatially incoherent and the CACAO-FB principle can be applied
to the imaging process. With its simple optical setup, we believe
CACAO-FB can be easily incorporated into many existing imag-
ing systems to compensate for the limitations of the physical
optics design.
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