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Stain‑free detection of embryo 
polarization using deep learning
Cheng Shen1,6, Adiyant Lamba2,6, Meng Zhu2,3, Ray Zhang4, Magdalena Zernicka‑Goetz2,5* & 
Changhuei Yang1,5*

Polarization of the mammalian embryo at the right developmental time is critical for its development 
to term and would be valuable in assessing the potential of human embryos. However, tracking 
polarization requires invasive fluorescence staining, impermissible in the in vitro fertilization clinic. 
Here, we report the use of artificial intelligence to detect polarization from unstained time‑lapse 
movies of mouse embryos. We assembled a dataset of bright‑field movie frames from 8‑cell‑stage 
embryos, side‑by‑side with corresponding images of fluorescent markers of cell polarization. We 
then used an ensemble learning model to detect whether any bright‑field frame showed an embryo 
before or after onset of polarization. Our resulting model has an accuracy of 85% for detecting 
polarization, significantly outperforming human volunteers trained on the same data (61% accuracy). 
We discovered that our self‑learning model focuses upon the angle between cells as one known 
cue for compaction, which precedes polarization, but it outperforms the use of this cue alone. By 
compressing three‑dimensional time‑lapsed image data into two‑dimensions, we are able to reduce 
data to an easily manageable size for deep learning processing. In conclusion, we describe a method 
for detecting a key developmental feature of embryo development that avoids clinically impermissible 
fluorescence staining.

Mammalian embryo polarization is the process by which all individual cells of the embryo establish an apical 
domain on the cell–cell contact-free surface. In the mouse embryo, this process occurs at the late 8-cell stage, on 
the third day of development after fertilization, (Fig. 1a) and in humans on the fourth day at the 8–16 cell  stage1–7. 
The apical domain is composed of the PAR complex and ERM proteins (Ezrin, Radixin, Moesin), enclosed by an 
actomyosin  ring2,8–12. The cells which inherit this apical domain after division will become specified as trophec-
toderm (TE), which ultimately forms the placenta. In contrast, those cells that do not inherit the apical domain 
will form the inner cell mass (ICM), which will give rise to all fetal tissues and the yolk  sac4–6. Thus, embryo 
polarization provides the first critical bifurcation of cell fates in the mammalian embryo, and establishment of 
cell lineages in the blastocyst, which is crucial for implantation and a successful pregnancy. In agreement with 
this, preventing cell polarization of the mouse and human embryo prevents its successful  development3,4,11,13.

Given the importance of polarization, an ability to detect this developmental feature non-invasively would 
be beneficial, for example, for the screening of viable human embryos for implantation. However, all current 
methods for detecting polarization are invasive as they rely on modifying embryos to express fluorescently tagged 
proteins that mark the apical  domains14,15. Such fluorescent tagging of human embryos meant for implantation is 
impermissible, which currently prevents clinical embryologists from utilizing polarization to evaluate the quality 
of human embryos for transfer to mothers-to-be.

Tracking polarization without the use of fluorescence could be solved using deep learning, which is able to 
discern salient features that may be unintuitive for  humans16,17. Indeed, deep learning has been recently used 
successfully to automate detection of an embryo’s morphological features and applied on single time-point 
images to assess implantation potential of human  embryos16–21. These deep learning approaches either provide 
a means of accurately counting cell numbers with developmental  time16,17; relate embryo morphology to subjec-
tive developmental criteria assessed by  embryologists18,19; or provide independent assessment of morphological 
 features19,20. One study has related preimplantation morphology with successful development of fetal  heartbeat21. 
However, the morphological features being assessed by the deep learning algorithms used to date are generally 
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not clear. In addition, these current approaches do not rely upon known critical developmental milestones in 
the molecular cell biology of preimplantation development. Here, we have used time lapse movies of fluores-
cent markers of polarization in the developing mouse embryo to train a deep learning system to recognize the 
polarization events in the corresponding bright field movie frames with a high degree of success. This is the first 
time that deep learning has been applied to recognize a specific molecular cell biological process in an embryo 
that is key for developmental success.

Figure 1.  Method to track and annotate polarity. (a) Overview of mouse pre-implantation development, from 
the zygote stage at embryonic day 0 to the late blastocyst stage at embryonic day 4.5. At the late 8-cell stage, 
polarization takes place, as each blastomere gains a defined apical-basal axis of polarity indicated by the presence 
of an apical domain (red). (b) Data preprocessing of dual-channel 3D mouse embryo videos, each of which is a 
5D tensor with the dimension of x, y, z, c (channel), and t (time). First, each video was split into a fluorescence 
(Ezrin-RFP) and DIC channel, visualized in red and gray respectively. Then, each channel was compressed 
along the z dimension by different algorithms. The maximum intensity z-projection algorithm was applied for 
the fluorescence channel and DTCWT based AIF algorithm for the DIC channel to get the frame sequences. (c) 
Expert annotation on fluorescence frame sequences, where the time point of polarity onset is pinpointed. In the 
time sequence, the onset of polarization was defined as the frame in which the blastomere had a clear polarity 
ring or cap (closed) which took up at least 1/3 of the visible surface, or 1/3 of the cell surface curve if displayed 
side-on. Frames before this point were defined as before-onset, whilst frames including and after this point are 
defined as after-onset. (d) Supervised learning of a single DCNN model. The DIC frame sequences paired with 
the class labels from fluorescence annotation were permuted and used as the input and target of the supervised 
learning. Transfer learning from pre-trained weights on ImageNet database and data augmentation are utilized 
in the training of all DCNN models. Scale bar = 30 μm.
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Results
Collection and annotation of embryo images. In order to develop our deep learning model for detect-
ing the polarization status of live and unstained embryos, we first required a large dataset of DIC embryo frames 
for which the polarization is unambiguously evident. Generating this dataset required each DIC image to have 
a corresponding channel that uses fluorescently tagged proteins to indicate polarization for each embryo clearly. 
The polarization of a single blastomere in the embryo can be determined by the localization of apical proteins, 
which are enclosed by an actomyosin  ring9–11,22. We built a large dataset composed of synchronized DIC and 
fluorescence channels of mouse embryos during polarization by collecting mouse embryo time-lapse record-
ings, each containing a fluorescence channel to indicate embryo polarization, and a DIC channel for model 
training and testing (Fig. 1b). For time-lapse recordings, embryos were injected at the 2-cell stage with synthetic 
mRNA for Ezrin tagged with red fluorescence protein (RFP), as  previously23, and cultured in vitro to the 16-cell 
stage. We used Ezrin as a marker for blastomere polarization, as Ezrin localizes to the apical surface during the 
formation of an apical polarity  domain12,24. Using the Ezrin-RFP fluorescent channel, we determined the time 
point at which the first blastomere of the embryo polarized for each time-lapse recording, indicated by formation 
of a clear apical polarity cap (Fig. 1c, Supplementary Fig. 1). Using this annotation, each DIC frame was labelled 
as either before or after the onset of polarization (Fig. 1d). In total, we produced a dataset containing 89 embryo 
time-lapse recordings of the 8-cell stage embryo during their polarization.

Compression of 3D embryo image sequences. In previous studies, a single slice image along the z axis 
was used for model  input16–21 due to the use of existing deep learning models designed for a two-dimensional 
(2D) image input. However, a single z-slice image does not capture 3D embryo structural information. Analysis 
of a 3D image stack with deep learning requires a re-designed model architecture that dramatically increases the 
complexity and time required for model  development25,26. Moreover, adapting existing pre-trained deep learn-
ing networks for 3D analysis through transfer  learning27 would not be straightforward as these networks are 
predominantly designed for 2D image recognition tasks. To resolve this problem, we utilized a state-of-the-art 
all-in-focus (AIF) algorithm based on dual-tree complex wavelet transform (DTCWT)28 to compress the opti-
cally sectioned z stack of each DIC frame in our dataset. The result was a single 2D AIF DIC image capturing the 
majority of relevant but sparsely distributed 3D embryo information at each time point (Fig. 1b).

We found that AIF images based on DTCWT could reveal all blastomeres of a 3D embryo in a single 2D 
image (Supplementary Fig. 2). In contrast, the median z slice typically contained several blastomeres that were 
optically out of focus, resulting in lost information. AIF images also resembled standard images, allowing for 
straightforward transfer learning using open-source 2D image classification models pre-trained on  ImageNet29 
as initialization.

Model architecture. The dataset consisting of AIF DIC images paired with corresponding annotated polar-
ization labels was randomly split into a training cohort of 70 embryos (1889 frames) and a testing cohort of 19 
embryos (583 frames) (Fig. 2a). These were used as learning and evaluation datasets, respectively, for a single 

Figure 2.  An ensemble deep learning approach to predict embryo polarization from DIC images. (a) Class 
distribution in the training/testing/whole dataset. (b) Ensemble learning on six DCNN models. The predicted 
probability vectors for two classes on a single testing frame by six DCNN models were averaged element-
wisely and the class corresponding to the larger probability was used as the final predicted label. (c) Temporal 
smoothing on the predicted labels for each testing embryo’s DIC frame sequence. The majority voting based 
smoothing window slid over the chronologically ordered binary labels. The window length is 3 and we kept 
the label at both ends untouched. Finally, the time index of first after-onset prediction was taken as the final 
prediction of polarity onset time point. Scale bar = 20 μm.
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deep convolutional neural network (DCNN) binary classification model. For supervised learning of DCNN 
models, we retained only information about whether a frame was before or after onset and stripped away other 
time information (Figs. 1d, 2b). On individual testing frames, each DCNN model outputs whether or not polari-
zation was detected as a vector containing two probabilities—one for each class (before or after onset, Fig. 2b). 
To mitigate over-fitting, we ensembled six DCNN models trained using different initializations and different 
optimizers but trained over the same number of epochs. The final polarization status prediction for a single input 
image is the class (before or after onset) having the highest average probability across all six contributing models. 
Overall, our model accuracy increased from an average of 82.6% for a single DCNN to 85.2% with ensemble 
learning.

Ensemble deep learning model outperforms human volunteers. We recruited six volunteers fol-
lowing the criteria outlined in the Methods section, to compare polarization detection accuracy against our 
model. We aimed to recruit human volunteers from a STEM background, who would be motivated to benefit 
from the technology in a clinical setting and who might compare favorably with our machine learning system. 
The volunteers were self-trained using the same annotated training dataset used by our model. They were then 
given the same AIF DIC testing dataset and asked to determine the polarization status for each test image (before 
or after onset).

The model we establish here yielded a classification sensitivity of 90.2% (95% confidence interval (CI): 
86.1%–93.8%) and specificity of 81.1% (95% CI: 76.2%–85.4%) for single image inputs, with areas under the 
receiver operating characteristic curve of 0.893 (95% CI: 0.866–0.917) (Fig. 3a and Supplementary Table 1). Deep 
learning achieved both a higher true positive rate and lower false positive rate than the average human volunteer. 
Figure 3b shows the confusion matrix for predictions. Our model correctly classified 497 out of 583 frames, 
resulting in a classification accuracy of 85.2% (95% CI: 82.2%–88.2%). In comparison, the average human accu-
racy on the same testing frames was 61.1% (95% CI: 57.1%–65.0%) (Fig. 3b). The model outperformed humans 
on average (Fig. 3c, two-tailed z-test, p < 0.0001) as well as individually (Supplementary Fig. 3).

Understanding image features of interest to the model. We interrogated our model for embryo 
regions that most strongly affected the model’s predictions, using class activation maps (CAM)30. CAM relies on 
a heat map representation to highlight pixels that trigger a model to associate an image with a particular class 
(before or after onset). In Fig. 4, we have overlaid the CAM heat map with the input testing AIF DIC image. In 
each heat map, red pixels indicate regions of the embryo containing features that correlate positively with the 
predicted polarization class, while blue pixels indicate regions containing features that correlate negatively (i.e., 
correlate positively with the opposing class). To understand which regions of an embryo influence our model 
most, we evaluated each possible prediction outcome: true negative (TN) (Fig. 4a), false positive (FP) (Fig. 4b), 
false negative (FN) (Fig. 4c), and true positive (TP) (Fig. 4d). When the model classified image frames as after 
polarization, it appeared to use inter-blastomere angle as a cue (see Discussion). Misclassifications tended to 
result from mismatched polarity between individual blastomeres and the overall embryo, producing weak pre-
diction probabilities for both classes near 50% while the model was forced to choose one class (Fig. 4c). Predic-
tions in this probability range are more reasonably interpreted as not sure or cannot tell, but these were not 
options for the model.

Model outperforms compaction alone for discrimination. The use of inter-blastomere angle as a 
cue by our model to determine embryo polarization (Fig. 4a) was not surprising. Inter-blastomere angle is an 
indicator of embryo  compaction31,32, a morphological change during development that typically precedes polari-
zation (Fig. 5a). To assess the extent to which our deep learning model uses just compaction for its polarization 
prediction, we annotated each embryo’s AIF DIC frame sequence with the time point of compaction. We defined 
the time of compaction as the first frame at which the smallest inter-blastomere angle of the embryo is over 120 
degrees, in agreement with previous research (Supplementary Fig. 4)32. To find the model’s predicted time point 
of polarization, we re-aligned embryo frames in their original time sequence and applied temporal smoothing 
on the predicted label sequence for each testing embryo based on majority voting to output a single time point 
for polarization (Fig. 2c).

The Pearson correlation coefficient between compaction time point and the model’s predicted time point of 
polarization onset was 0.75 across the 19 embryos used for testing (Fig. 5b), suggesting that whilst compaction is 
indeed a utilized cue, it is not the only factor used by the model. We evaluated whether our model was superior 
to using compaction alone as a proxy for polarization, by calculating the time discrepancies between annotated 
polarization time indexes (ground truth) and predicted time indexes by either our model or the compaction 
proxy. The model had significantly smaller time point prediction errors compared to the latter (two-tailed Wil-
coxon matched-pairs signed-rank test, p < 0.05, Fig. 5c). That is, the model was superior to the use of compaction 
alone for predicting polarization and has likely managed to learn additional cues we do not yet understand.

Distinguishing exact polarization onset time. We wished to further extend our deep learning model 
to identify the exact point at which polarization occurs in time-sequence videos. To this end, we evaluated polar-
ization onset time point predictions from the classification results of both the model and human volunteers, 
using a temporal smoothing method (Fig. 2c). Timestamp errors between predicted and annotated time points 
were calculated as was done previously for compaction time point analysis. Our model had significantly smaller 
timestamp prediction errors than the average human volunteer by pairwise comparison (two-tailed Wilcoxon 
matched-pairs signed-rank test, p < 0.01, Fig. 6; Supplementary Fig. 5a).
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We next wished to investigate whether smoothened results from our ensemble classification model could 
outperform even human volunteers who are given access to temporal information during testing that the model 
does not use. To this end, we provided each volunteer with the complete AIF DIC videos in frame-by-frame 
time sequence for each embryo and asked for their estimate of the polarization onset time point. Compared with 
the smoothened model classification results performed on individual unordered images, the average human 
timestamp discrepancy was significantly larger than that of our model (two-tailed Wilcoxon signed-rank test, 
p < 0.05, Fig. 6; Supplementary Fig. 5b). The model identified exact polarization time points more precisely than 
the human volunteers, even when the volunteers utilized temporally ordered full video frames that the model 
did not have access to during training.

Discussion
In this study, we show that an ensemble deep learning model can identify polarization in unstained embryo 
images from the DIC microscope with an accuracy surpassing that of humans by a wide margin. When clas-
sifying 583 test DIC 8-cell stage frames, our model yielded an accuracy of 85% [95% confidence interval (CI): 
82.2%–88.2%] compared to corresponding average human accuracy of 61% [95% CI: 57.1%–65.0%].

It is important to note the difficulty of the polarization detection task using unstained embryo images, since to 
the naked human eye, unstained images do not have any clear features which allow identification of the cellular 
apical domain. This is reflected in our observed human accuracy of 61%, which represents a performance level 

Figure 3.  Results of image classification task by the ensemble deep learning model and the average human. 
(a) The receiver operating characteristic (ROC) curve of the performance of the ensemble deep learning (DL) 
model on testing frames. The 95% confidence intervals (CIs) of the ROC curve are indicated by the orange 
shaded area. The orange solid star represents the performance of the ensemble DL model with the default 
probability threshold of 0.5 to binarize its output and the dark blue solid circle represents the performance of 
the average human (AH), which is an aggregate result of six human volunteers’ prediction. We applied majority 
voting to the six predictions on each testing frame to obtain the average human performance. If each prediction 
received three votes, we randomly assigned a prediction of before or after onset. (b) Confusion matrix of image 
classification on testing frames by the ensemble DL model with the binarization threshold of 0.5 and the average 
human. c Testing accuracy bar chart of the ensemble DL model and the average human compared with no 
skill (random predictions), where the error bars represent the 95% CI. The ensemble DL model significantly 
outperforms the average human, and the no skill predictions. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, 
NS, not significant, two-sided z-test. All the 95% CIs are estimated by bootstrapping the testing dataset with 
1000 replicates.
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barely higher than random chance. Expressed as odds, the odds of a human volunteer correctly differentiating 
polarization were 1.5—that is, humans were right 1.5 times for each time they were wrong. In contrast, our deep 
learning model was right 5.7 times for each time it was wrong.

Current embryo selection in IVF clinics relies on crude and qualitative expert inspection of live embryos 
under plain microscopy that equates to an educated guess. Deep learning is an unusually well-suited solution 
to providing a more accurate assessment of embryo health for IVF, since deep neural networks recognize subtle 
features that are difficult for humans to  identify33–35. Prior research in this  field16,17,20 limited itself only to features 
that are obvious on bright field or DIC imaging such as cell count and size, or to directly predict implantation 
potential without investigating underlying biological  processes19. Our model can potentially enable embryo 
quality assessment using an important developmental milestone and thereby overcome some limitations of these 
prior deep learning studies. To our knowledge, there is currently no other known way to adequately evaluate the 
developmentally critical polarization milestone for embryo health screening prior to selection for implantation. 
By detecting an underlying developmental feature of the embryo using unstained embryo images, our study 
provides a platform for a potential future solution to improve IVF technology.

We investigated possible reasons for the successes and failures of our model using the CAM technique and 
concluded that inter-blastomere angle, an indicator of compaction, was one of the model’s cues for prediction. 
However, compaction alone was an inferior predictor of polarization compared to the model, suggesting that our 
model learned additional features informative of polarization that we currently do not understand. The intriguing 
implication is that more discriminative biology is apparent in simple unstained embryo images than we currently 
realize. Moreover, our deep learning model was able to identify the exact time point of polarization onset amongst 
temporally sequenced video frames better than all human volunteers, even with a severe disadvantage in data.

We were able to circumvent 3D image stack analysis through the use of a state-of-the-art all-in-focus 
 algorithm28, which allowed for the efficient collapse of 3D optical data to 2D. Prior studies that apply deep learn-
ing to embryo development have used single z slice DIC images as input, which obscures important 3D blasto-
mere features. Our DTCWT-based method of compressing multiple z slices into a single maximally informative 
2D representation reduces data size, allowing a full range of published 2D neural network models to become 
accessible for analysis.

We considered several possibilities during the design of our model architecture. Many DCNN architectures 
have been published for image classification, including dense convolutional network (DenseNet)36, squeeze-and-
excitation network (SENet)37 and residual neural network (ResNet)38. We used cross validation to select a final 
candidate architecture among them these networks and found that ResNet has the highest average validation 
accuracy and a low variance (Supplementary Fig. 6). This model became the basis for our individual DCNN 
modules, of which we combined six to form the final ensemble polarization classifier. Here the number six is to 
match the number of recruited human volunteers for fair comparison.

Our deep learning-based approach presents a significantly more accurate and less laborious way to evaluate 
mammalian embryo polarization compared to manual analysis. In future studies, this approach can be used 

Figure 4.  Visualization of the decision-making by the ensemble deep learning model. Heat maps obtained 
by the class activation mapping (CAM) technique highlight how the ensemble deep learning model attends 
the discriminative regions in the testing frame when giving the predicted class label. The red regions indicate 
positive focus of the model (in alignment with the predicted label) and the blue regions negative focus (in 
opposition to the predicted label). (a–d) correspond to four cases in confusion matrix, true negatives (TN), false 
positives (FP), false negative (FN), and true positives (TP), respectively. In each subfigure, from left to right are 
the testing DIC image, its overlay with the focus heat map, and its corresponding fluorescence channel image. 
On top of the test DIC image is the predicted label of the ensemble DL model with its confidence (from 0 to 
100%). On top of the fluorescence image is the annotated label by the expert. All the heat maps show that our 
DL model either attends to the individual blastomeres or the inter-blastomere angles. For example, TP heat map 
d focuses on the truly polarized blastomeres. At a certain time-point, some blastomeres have started polarization 
but the others have not, as shown in the FN case (c). This issue resulted in the DL model making a Type II error 
with low confidence in the case given. Scale bar = 20 μm.
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to predict other features that indicate the quality of developing embryos, which can be measured by blastocyst 
implantation success rate. Furthermore, it could be useful for stainless tracking of polarization in live human 
embryos, allowing IVF clinics to assess embryo polarity status and its precise timing using non-invasive methods, 
and move away from empirical embryo grading to a system grounded in established developmental milestones 
of embryogenesis. In the future, in order to further enhance the generalization ability of our trained model, we 
can utilize more diverse data e.g., from different institutes and clinics.

In conclusion, we have developed a powerful non-invasive deep learning method to detect embryo polari-
zation from images without the use of fluorescence, while surpassing human performance. This method has a 
great potential to provide the first example of detecting an underlying developmental feature of the mammalian 
embryo from unstained images, which could be an important step towards improving IVF technology from the 
rate of increase in cell number or assessment of morphological features independently of developmental events.

Methods
Assembling the embryo dataset. All mouse experimental data was obtained in accordance with the 
Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012, under project license by the University 
of Cambridge Animal Welfare and Ethical Review Body (AWERB). Reporting of animal experiments follows 
ARRIVE guidelines. Embryos were collected at the 2-cell stage from F1 females (C57BI6xCBA) mated with 
F1 studs, following super ovulation of the female: injection of 7.5 IU of pregnant mares’ serum gonadotropin 
(PMSG; Intervet), followed by injection of 7.5 IU of human chorionic gonadotropin (HCG; Intervet) after 48 h 
and immediately prior to mating.

Embryos were microinjected with Ezrin–red fluorescent protein (RFP) mRNA as a polarity marker before 
imaging, in each blastomere at the 2-cell stage, as described  previously23. Images were collected on confocal 
Leica SP5 or SP8 microscopes. The interval between each frame on the time (t) axis was 1200 s–2400 s for each 
embryo, and z frames were taken at 4 μm intervals on the z axis. Time-lapse recordings were converted into TIFF 
files for analysis and processed on Fiji software. Recordings that were incorrectly formatted, visually unclear, or 
which showed grossly defective embryos were excluded. From an initial 174 embryo recordings, 89 were used 

Figure 5.  Comparative analysis of the ensemble deep learning model prediction and the compaction-based 
prediction for polarization. (a) Chronological order of compaction and polarization events during the 8-cell 
stage for a normal mouse embryo. (b) Correlation analysis between time points of DL model polarity prediction 
and compaction. The x and y coordinate are the predicted polarity onset time index of testing embryos (marked 
in blue solid balls) by the ensemble DL model and the annotated compaction time index, respectively. Their 
pairwise relationship shows a Pearson correlation coefficient (ρ) of 0.75. (c) Violin plot to visualize the time 
discrepancy between the annotated and the predicted polarity onset time index on 19 testing embryos by 
ensemble DL model and compaction proxy, overlaid with a slopegraph showing each testing embryo prediction 
time discrepancy in pair. From the kernel density estimate (blue shade) of violin plot and the connection 
line trends of slopegraph, we can tell that the prediction time discrepancy of DL model is significantly lower 
than the one of compaction proxy. The p-value is specified in the figure for *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001, NS not significant, two-sided Wilcoxon matched-pairs signed-rank test.
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for deep learning and human testing (Supplementary Fig. 1). Only 8-cell stage frames were included in deep 
learning and analysis (defined as frames from the first frame where 8 distinct blastomeres are visible, to the frame 
immediately prior to the moment at which the final blastomere starts dividing). The DIC channel images were 
converted into an AIF DIC frame for each time point as described in Results, and the Ezrin-RFP channel images 
were converted into maximum intensity z projection frames, prior to annotation.

Embryo annotation (polarization and compaction). Each embryo time-lapse recording was marked 
with a polarization onset time by a human expert annotator, corresponding to the first frame in which a polar-
ized blastomere is clearly visible. This was achieved using the maximum intensity z projection Ezrin-RFP frame: 
the polarization onset frame is one in which the first apical ring or cap is completely and clearly formed (closed) 
on any blastomere, and which takes up greater than or equal to 1/3 of the surface of the cell as visible in the 
recording. All frames after and including this polarization onset point were classified as after-onset. All frames 
prior to this point were classified as before-onset. Compaction time was indicated when smallest inter-blasto-
mere angle was greater than 120 degrees, as  previously32. All frames after and including this point were consid-
ered compacted, and all frames prior to this point were considered uncompacted.

Ensemble deep learning framework. In this study, two types of effective machine learning techniques, 
DCNN and ensemble learning, were adopted and combined together for prediction of polarity onset. Multiple 
(6 here to match the number of human volunteers) DCNNs learnt on the training cohort and then their output 
predictions were averaged to predict the class label of each testing image. Specifically, the ResNet backbone 
was chosen as the main part of each DCNN model. A dense layer with two output nodes is added on top of the 
ResNet backbone. We used the pre-trained weights on ImageNet database as the initialization for each DCNN 
model. Three of them were trained with SGD optimizer and the other three were trained with Adam optimizer. 
All of them were trained for 40 epochs. At the end of 40 epochs, all the models converge to nearly 100% in 
terms of the training accuracy. Different training settings made the six trained CNNs a bit more diverse from 
each other, where the diversity among CNNs would improve the generalization ability of the ensemble model. 
To investigate ensemble learning, we first adopted the cross-validation (CV) technique to compare different 
CNN backbones, including  DenseNet36,  SENet37 and  ResNet38. Based on the results of fivefold CV experiments 
(Supplementary Fig. 6), we found ResNet is the optimal choice in both prediction performance and computa-
tional load. Then, we tried different ensemble techniques and their results are summarized in Supplementary 
Table 2. From this table, we can see that ensemble on six ResNet models using all the training data by varying the 
optimization initials and then applying majority voting on the output labels achieved the best testing accuracy. 
However, its advantage over averaging the output probability is only 0.4%. It is quite marginal, and the latter is 
more intuitive and common considering the number of ensemble members is even. We further note that there is 
a limit on ensemble learning improvement over a single classifier, which is mainly bottlenecked by the classifier 
architecture rather than ensemble techniques.

Figure 6.  Comparative analysis of the polarity onset time point prediction by the ensemble deep learning 
model, the average human and the compaction proxy. Violin plot of time discrepancy between the annotated 
and the predicted polarity onset time index of 19 testing embryos by ensemble DL model, average human (AH) 
without/with time information and compaction proxy. AH without (w/o) time information (info) means that 
six human volunteers were given the randomized testing frames without any time information. Their predicted 
labels were then chronologically ordered for each testing embryo and temporally smoothened in the same 
manner as the ensemble DL model predictions. The mean discrepancy was taken from the six volunteers. AH 
with (w/) time information indicates that six human volunteers were given the chronologically ordered frames 
for each testing embryo. They directly estimated the polarity onset time point from these time sequences. 
Statistical analysis uses the ensemble DL model result as the reference to test their difference significance and the 
p-values are specified in the figure for *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, NS not significant, two-
sided Wilcoxon matched-pairs signed-rank test.
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Human trial. In order to evaluate the performance of our DL model, comparative trials on human volunteers 
to identify polarity onset were conducted as well. Six human volunteers (3 males, 3 females for gender equality) 
with a bachelor’s degree in a STEM subject but without prior experience of mouse embryo development stud-
ies were recruited from Caltech community, as representatives for competent STEM-trained but inexperienced 
volunteers who would benefit from the technology in a clinical setting. Volunteers were sent an email with clear 
instructions and a link to the training and testing data. Each was asked to learn on the training dataset first and 
then apply their learnt patterns to the testing images, to predict their polarity onset status by filling in an Excel 
table with predicted labels. After the test, they each returned their Excel file for evaluation.

All participants provided informed consent before taking part in our study. They consented to allow their 
data to be used in the final analysis and all individuals received reward for participation. The study was approved 
by Caltech Institutional Review Board.

Evaluation of model and human performance. Results from the testing data—for each of the model 
and human predictions—were processed as follows: In classification analysis, classified frames from the model/
prediction were automatically sorted into one of four categories visible in the confusion matrix (polarized or 
non-polarized annotated true class, versus polarized or non-polarized predicted class). Cases in which the true 
class matched the predicted class were scored as an accurate prediction, and cases where the two classes did 
not match were scored as an inaccurate prediction. Population proportions of accurate results represent the 
proportion of accurate frames in the total population of frames. For time-smoothened data, the frames were 
first returned to time-order, after which the polarity onset point was determined by finding the point at which 
the prediction switched from an unpolarized majority to a polarized majority (as seen in Results). All frames 
after this polarity onset point were then classified as polarized, and all frames before this point were classified 
as unpolarized, therefore ‘smoothening’ out any anomalous predictions using time point information. For time 
point analysis, the polarity onset point (as determined from the smoothening process) was used. For each testing 
embryo time-lapse recording, the time discrepancy for the model/volunteer was calculated as the actual time 
difference (to the nearest second) between the predicted polarity onset frame and the annotated polarity onset 
frame, using the knowledge of the frame-to-frame time difference for each recording. Where no predicted onset 
frame was given within the allocated recording, for this analysis the frame immediately after the final frame 
of the time-lapse recording was used as the predicted onset of polarization. These time discrepancies for each 
embryo were used in pairwise comparisons.

CAM attention map generation. To identify focus areas of our ensemble model, we generated attention 
heat maps using the class activation mapping technique. To be specific, we multiplied each feature map passing 
through the global average pooling (GAP) layer of ResNet backbone with their corresponding weight connect-
ing the GAP layer and the fully-connected layer. Then we added the weighted feature maps in an element-wise 
manner. Each weight tells us how much importance needs to be given to individual feature maps. The final 
weighted sum gives us a heat map of a particular class (in our case, the before/after polarity onset class), which 
indicates what pixels our model favors or dislikes to make the final prediction. The heat map size is the same as 
the one of feature maps. Therefore, to impose it on the input AIF DIC image, we scaled it to the size of the input 
image and finally got results shown in Fig. 3.

Statistical analysis. Image classification results were compared using a two-tailed z-test of two popula-
tion proportions with significance classified for p-values as: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 and 
not significant (NS). Time prediction discrepancies were compared using two-sided Wilcoxon matched-pairs 
signed-rank test since our testing data size is small and not guaranteed as normal. Significance was given for 
p-values as the same with the above. Further details are given with each result. Statistical analyses were per-
formed using the statistics module in SciPy package with Python (https:// docs. scipy. org/ doc/ scipy/ refer ence/ 
tutor ial/ stats. html). All the 95% confidence intervals were estimated by bootstrapping the testing dataset with 
1000 replicates.

Institutional review board statement. All mouse experimental data was obtained in accordance with 
the Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012, under project license by the Uni-
versity of Cambridge Animal Welfare and Ethical Review Body (AWERB). Reporting of animal experiments fol-
lows ARRIVE guidelines. Embryos were collected at the 2-cell stage from F1 females (C57BI6xCBA) mated with 
F1 studs, following super ovulation of the female: injection of 7.5 IU of pregnant mares’ serum gonadotropin 
(PMSG; Intervet), followed by injection of 7.5 IU of human chorionic gonadotropin (HCG; Intervet) after 48 h 
and immediately prior to mating. All participants in the human trial provided informed consent before taking 
part in our study. They consented to allow their data to be used in the final analysis and all individuals received 
reward for participation. The human trial was approved by Caltech Institutional Review Board.

Data availability
The testing dataset is available on https:// github. com/ Scott- Sheen/ AI4Em bryo for model validation use and 
academic purposes only. All other datasets generated and analyzed in the current study (including larger training 
image dataset) are available from the corresponding author (M.Z.-G) on reasonable request.

Code availability
The training code for the single DCNNs and the testing code for the ensemble DL model are available at: https:// 
github. com/ Scott- Sheen/ AI4Em bryo.

https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://github.com/Scott-Sheen/AI4Embryo
https://github.com/Scott-Sheen/AI4Embryo
https://github.com/Scott-Sheen/AI4Embryo
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